

GUIA RÁPIDO PARA COMUNICAÇÃO MODBUS RS485 COM INVERSORES INVT

PROCEDIMENTO COMUNICAÇÃO MODBUS RS485 ENTRE INVERSORES INVT (GD10 e GD20)

Parâmetros par serem alterados:

- P00.01 = 2 (Start/Stop pela Comunicação Modbus)
- **P00.06** = 8 (Comando de seleção de frequência A via Modbus)
- **P00.07** = 8 (Comando de seleção de frequência B via Modbus)
- P00.11 = 0~3600s (Valor da Rampa de Aceleração do Inversor)
- **P00.12** = 0~3600s (Valor da Rampa de Desaceleração do Inversor)
- **P14.00** = 1~247 (Nó do Inversor na Rede)

P14.01 = Baud Rated	0: 1200 bps
	1: 2400 bps
	2: 4800 bps
	3: 9600 bps
	4: 19200 bps
	5: 38400 bps
	6: 57600 bps

P14.02 = Parâmetros do Protocolo	0: (N, 8, 1) para RTU	11: (O, 7, 2) para ASCII
	1: (E, 8, 1) para RTU	12: (N, 8, 1) para ASCII
	2: (O, 8, 1) para RTU	13: (E, 8, 1) para ASCII
	3: (N, 8, 2) para RTU	14: (O, 8, 1) para ASCII
	4: (E, 8, 2) para RTU	15: (N, 8, 2) para ASCII
	5: (O, 8, 2) para RTU	16: (E, 8, 2) para ASCII
	6: (N, 7, 1) para ASCII	17: (O, 8, 2) para ASCII
	7: (E, 7, 1) para ASCII	
	8: (O, 7, 1) para ASCII	
	9: (N, 7, 2) para ASCII	
	10: (E, 7, 2) para ASCII	

www.kalatec.com.br

P14.03 = 0~200ms (Delay do tempo de resposta) – OBS: Geralmente não alteramos;

P14.04 = 0.1~60.0s (Tempo de timeout da comunicação) – OBS: Geralmente não alteramos;

Após configurado e alterado esses parâmetros no inversor, devemos montar a programação no nosso controlador externo. Para isso, temos que conhecer os endereços Modbus que queremos ler/escrever. No manual do inversor (página 108) temos a tabela completa com todos os endereços Modbus a serem lidos/escritos. Abaixo segue um exemplo de como partir e parar o motor, alterando sua frequência.

Function instruction	Address definition	Data meaning instruction	R/W characteristics	
Communication control command	2000H	0001H: forward running	W/R	
		0002H: reverse running		
		0003H: forward jogging		
		0004H: reverse jogging		
		0005H: stop		
		0006H: coast to stop (emergency stop)		
		0007H: fault reset		
		0008H: jogging stop		

Nesse exemplo acima, se quisermos iniciar o inversor em sentido horário, temos que mover o valor de 0001H para dentro do endereço 2000H.

	200414	Communication setting frequency (0~Fmax (unit:	
	20016	0.01Hz))	W/D
	2002	PID reference, range (0~1000, 1000	WIR
	20020	corresponds to100.0%)	
	2003H	PID feedback, range (0~1000, 1000	W/D
		corresponds to100.0%)	W/R
		Torque setting value (-3000~3000, 1000	
	2004H	corresponds to the 100.0% of the rated current	W/R
		of the motor)	
	2005	The upper limit frequency setting during forward	W//D
	20050	rotation (0~Fmax (unit: 0.01Hz))	W/R
The address of the	2006	The upper limit frequency setting during reverse	W/D
communication n	2006H	rotation (0~Fmax (unit: 0.01Hz))	W/R
sotting value	2007H	The upper limit torque of electromotion torque	
setting value		(0~3000, 1000 corresponds to the 100.0% of the	W/R
		rated current of the motor)	
	2008H	The upper limit torque of braking torque	
		(0~3000, 1000 corresponds to the 100.0% of the	W/R
		rated current of the motor)	
	2009H	Special control command word	
		Bit0~1: =00: motor 1 =01: motor 2	
		=10: motor 3 =11: motor 4	
		Bit2: =1 torque control prohibit	W/R
		=0: torque control prohibit invalid	
		Bit3: =1 power consumption clear	
		=0: no power consumption clear	

Caso eu queira alterar a frequência de trabalho, devo escrever o valor da frequência (em 0.01Hz) para dentro do registrador 2001H. Com isso, eu já consigo alterar a frequência de trabalho do motor.

Quaisquer outros dados que você queira controlar no processo como corrente, tensão, feedback de velocidade, entre outros, sugiro consultar a tabela completa de endereços Modbus disponível no manual do próprio inversor INVT (Manual do GD20, a partir da página 108).

Exemplo de Programação – CLP DELTA

Acionando o Inversor para o sentido horário:

No bloco acima, podemos ver as especificações que queremos enviar para o inversor, sendo elas:

S1 do bloco: Valor do Nó do inversor que irá receber essas informações;

S2 do bloco: Função Modbus de Escrita (06H);

S do bloco: Endereço Modbus do Inversor em que eu quero escrever (2000H endereço para partir e parar o motor);

n do bloco: Comprimento de leitura/escrita dos dados;

Com isso, podemos analisar que esse bloco irá mandar o inversor acionar o motor para o sentido horário, pois coloquei o valor "1" para dentro do endereço 2000H do inversor conforme vimos na tabela de endereços Modbus acima.

Alterando a frequência de trabalho do inversor:

Já nesse exemplo acima, temos a alteração da frequência do inversor através do bloco Modbus do CLP, onde temos:

S1 do bloco: Valor do Nó do inversor que irá receber essas informações;

S2 do bloco: Função Modbus de Escrita (06H);

S do bloco: Endereço Modbus do Inversor em que eu quero escrever (2001H endereço para alterar a frequência);

n do bloco: Comprimento de leitura/escrita dos dados;

Nesses dois exemplos acima fizemos o controle de partida do motor alterando a frequência. É uma aplicação simples e convencional, porém muito utilizada. Caso queira realizar um trabalho mais complexo, com mais leituras, você pode utilizar a tabela de endereços Modbus e criar sua lógica no CLP.

Matriz Campinas – SP

Segunda à Quinta das 07h40 às 17h 30 Sexta das 08h00 às 17h00 Telefone: (19) 3045-4900 Atende Brasil inteiro e Interior de São Paulo.

Filial São Paulo – SP

Segunda à Quinta das 07h40 às 17h 30 Sexta das 08h00 às 17h00 Telefone: (11) 5514-7680 Atende Grande São Paulo e São Paulo Capital

Filial Joinville – SC

Segunda à Quinta das 07h40 às 17h 30 Sexta das 08h00 às 17h00 Telefone: (47) 3425-0042 Atende Estados PR e SC

Caxias do Sul – RS

Segunda à Quinta das 07h40 às 17h 30 Sexta das 08h00 às 17h00 Telefone: (54) 3698-4588 Atende Estados RS

Filial Belo Horizonte – BH

Segunda à Quinta das 07h40 às 17h 30 Sexta das 08h00 às 17h00 Telefone: (31) 4042-0584 Atende Estado MG

SITE KALATEC AUTOMAÇÃO