

"Guia rápido de aplicações GD20"

Inversor INVT – GD20

1) GD20 Hardware.

- Conexões
- Modelos / Especificações
- Dimensões
- Resistor de frenagem
- Ligações
- 2) Software aspectos gerais
- 3) Comandos básicos
 - Autotuning
 - Controle por velocidade.
 - 1. Analógica
 - 2. Multi-Step speed
 - 3. Entrada rápida
 - 4. Keypad
 - 5. Modbus
 - Controle de torque.
 - 1. Analógica
 - 2. Keypad
 - 3. Modbus
 - Integrações velocidade + torque
 - 1. Analógica
 - 2. Keypad
 - 3. Modbus
 - Controle Modbus RS485 em geral
- 4) Parâmetros de feedback.
- 5) Realizando Backup das parametrizações via Software
- 6) Realizando Backup das parametrizações via Keypad
- 7) Alarmes

A figura a seguir mostra a estrutura do VFD (3PH 400V, ≤2,2kW) (usando o 0,75kW Modelo VFD como exemplo).

No.	Nome	Descrição
1	Porta do teclado externo	Conecte o teclado externo
2	Tampa da porta	Proteger a porta do teclado externo
3	Tampa	Proteja as peças e componentes internos
4	Furo para a tampa deslizante	Fixe a tampa deslizante
5	Placa de entroncamento	Proteja os componentes internos e fixe os cabos do circuito principal
6	Placa de identificação	Placa de identificação do produto
7	Botão do potenciômetro	Operação do teclado
8	Terminais de controle	Diretrizes de instalação
9	Terminais do circuito principal	Diretrizes de instalação
10	Furo de parafuso	Fixe a tampa do ventilador e o ventilador.
11	Ventilador de resfriamento	Rastreamento de falhas
12	Tampa do ventilador	Proteja o ventilador
13	Código de barras	O mesmo que o código de barras na placa de identificação Nota: O código de barras está na concha do meio que está sob a tampa
Nota: exigêr	Na figura acima, os parafusos en acias dos clientes.	m 4 e 10 são fornecidos com embalagem e instalação específica depende das

A figura a seguir mostra a estrutura do VFD (3PH 400V, ≥4kW) (usando o VFD de 4kW modelo como exemplo).

No.	Nome	Descrição
1	Porta do teclado externo	Conecte o teclado externo
2	Tampa	Proteja as peças e componentes internos
3	Keypad	Operações com Keypad
4	Ventilador de resfriamento	Rastreamento de falhas.
5	Placa de identificação	Placa de identificação do produto
6	Tampa para o orifício de	Opcional, aumento do grau de proteção. É necessário desvalorizar a
0	emissão de calor	DVF porque a temperatura interna aumenta
7	Terminais de controle	Diretrizes de instalação
8	Terminais do circuito principal	Diretrizes de instalação
9	A entrada do cabo do circuito	Fix the cables
10		
10	Placa de identificação simples	Placa de identificação do produto simplificada
11	Código de barras	O mesmo que o código de barras na placa de identificação
11	Courgo de barras	Nota: O código de barras está na concha do meio que está sob a tampa

CD20 Hardware.

MODELOS E ESPECIFICAÇÕE:

O código do modelo contém informações sobre o VFD. Os usuários podem encontrar o código do modelo na placa de identificação anexada ao VFD ou na placa de identificação simples

	(GD20 - 2R2G - 4 - 4	$-\underline{\mathbf{B}}-\underline{\mathbf{EU}}$
		1 2 3	4 5
Chave	No.	Descrição	Conteúdo detalhado
Abreviação da série de produtos	1	Abreviação da série de produtos	GD20: Goodrive20 série VFD
Potência nominal	2	Faixa de potência + tipo de carga	055: 55kW; G: Carga de torque constante
Classe de tensão	3	Classe de tensão	S2: 1PH 200v-240V 2: 3PH 200V -240V 4: 3PH 380V - 480V
Observação adicional 1	4	Unidade de Frenagem integrada	 Nulo: A unidade de frenagem, incorporada está incluída na configuração padrão para os modelos de 37kW+ B) A unidade de frenagem integrada é opcional para os modelos de 45kW+, -B é a sua unidade de frenagem integrada modelos
Observação adicional 2	5		EU: Função de desligamento de torque seguro integrada

CD20 Hardware.

MODELOS E ESPECIFICAÇÕES:

Model	Voltage degree	Rated output power (kW)	Rated input current (A)	Rated output current (A)	STO function		
GD20-OR4G-S2-EU		0.4	6.5	2.5			
GD20-OR7G-S2-EU	Mono Eásiao 220V	0.75	9.3	4.2			
GD20-1R5G-S2-EU	Mono-Fasico 230 V	1.5	15.7	7.5	Class SIL2		
GD20-2R2G-S2-EU		2.2	20	10	PLd CAT.3		
GD20-OR4G-2-EU		0.4	3.7	2.5			
GD20-OR7G-2-EU		0.75	5	4.2			
GD20-1 R5G-2-EU		1.5	7.7	7.5			
GD20-2R2G-2-EU	Tri-Fásico 230V	2.2	11	10		\langle	
GD20-004G-2-EU		4	17	16	Class SIL3 PLe CAT 3		
GD20-5R5G-2-EU		5.5	21	20			
GD20-7R5G-2-ElJ		7.5	31	30			
GD20-OR7G-4-EU		0.75	3.4	2.5	Class SIL2	3	
GD20-1 R5G-4-EU		1.5	5.0	4.2	PLd CAT.3	/	
GD20-2R2G-4-EU		2.2	5.8	5.5			
GD20-004G-4-EU		4 13.5 9.5					
GD20-5R5G-4-EU		5.5 19.5 14					
GD20-7R5G-4-EU		7.5	25	18.5			
GD20-011G-4-EU		11	32	25			
GD20-015G-4-EU		15	40	32			
GD20-018G-4-EU		18.5	47	38			
GD20-022G-4-EU		22	51	45			
GD20-030G-4-EU	Tri-Fásico 380V	30	70	60			
GD20-037G-4-EU		37	80	75	Class SIL3		
GD20-045G-4-EU		45	98	92	PLe CAT.3		
GD20-045G-4-B-EU		45	98	92			
GD20-055G-4-EU		55	128	115			
GD20-055G-4-B-EU		55	128	115			
GD20-075G-4-EU		75	139	150			
GD20-075G-4-B-EU		75	139	150			
GD20-090G-4-EU		90	168	180			
GD20-090G-4-B-EU		90	168	180			
GD20-110G-4-EU		110	201	215			
GD20-110G-4-B-EU		110	201	215			

Montagem na parede de VFDs de 0,75-2,2 kW (unidade de dimensão: mm)

Montagem na parede de VFDs de 0,75-2,2 kW (unidade de dimensão: mm)

Model	W1	W2	H1	H2	D1	D2	Mounting hole diameter (d)	Weight (kg)
GD20-0R4G-S2-EU	80.0	60.0	160.0	150.0	123.5	120.3	Ø 5	0.9
GD20-0R7G-S2-EU	80.0	60.0	160.0	150.0	123.5	120.3	Ø 5	0.9
GD20-1R5G-S2-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1.2
GD20-2R2G-S2-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1.2
GD20-0R4G-2-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1
GD20-0R7G-2-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1
GD20-0R7G-4-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1
GD20-1R5G-4-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1
GD20-2R2G-4-EU	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5	1

Montagem em trilho de VFDs de 1PH 220V/3PH 380V (≤2,2kW) e 3PH 220V (≤0,75kW) (Dimensão (unidade: mm))

Montagem em trilho de VFDs de 1PH 220V/3PH 380V (≤2,2kW) e 3PH 220V (≤0,75kW) (Dimensão (unidade: mm))

Model	W1	H1	H3	H4	D1	D2	Mounting hole diameter (d)	Weight (kg)
GD20-0R4G-S2-EU	80.0	160.0	35.4	<u>36.6</u>	123.5	120.3	Ø 5	0.9
GD20-0R7G-S2-EU	80.0	160.0	35.4	<u>36.6</u>	123.5	120.3	Ø 5	0.9
GD20-1R5G-S2-EU	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5	1.2
GD20-2R2G-S2-EU	80.0	185.0	35.4	<u>36.6</u>	140.5	137.3	Ø 5	1.2
GD20-0R4G-2-EU	80.0	185.0	35.4	<u>36.6</u>	140.5	137.3	Ø 5	1
GD20-0R7G-2-EU	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5	1
GD20-0R7G-4-EU	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5	1
GD20-1R5G-4-EU	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5	1
GD20-2R2G-4-EU	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5	1

DIMENSÕES:

Montagem em trilho de VFDs de 1PH 220V/3PH 380V (≤2,2kW) e 3PH 220V (≤0,75kW) (Dimensão (unidade: mm))

Model	W1	W2	W3	H1	H2	D1	D2	Mounting hole diameter (d)	Weight (kg)
GD20-1R5G-2-EU	146.0	131.0	_	256.0	243.5	167.0	84.5	Ø6	3.1
GD20-2R2G-2-EU	146.0	131.0		256.0	243.5	167.0	84.5	<mark>Ø</mark> 6	3.1
GD20-004G-2-EU	146.0	131.0		256.0	243.5	167.0	84.5	Ø 6	3.1
GD20-5R5G-2-EU	170.0	151.0		320.0	303.5	196.3	113.0	Ø6	5.58
GD20-7R5G-2-EU	170.0	151.0	_	320.0	303.5	196.3	113.0	Ø 6	5.83
GD20-004G-4-EU	146.0	131.0		256.0	243.5	167.0	84.5	Ø6	3.1
GD20-5R5G-4-EU	146.0	131.0		256.0	243.5	167.0	84.5	Ø6	3.1
GD20-7R5G-4-EU	170.0	151.0		320.0	303.5	196.3	113.0	Ø6	5.58
GD20-011G-4-EU	170.0	151.0		320.0	303.5	196.3	113.0	Ø6	5.58
GD20-015G-4-EU	170.0	151.0		320.0	303.5	196.3	113.0	Ø6	5.83
GD20-018G-4-EU	200.0	185.0		340.6	328.6	184.3	104.5	Ø6	9
GD20-022G-4-EU	200.0	185.0		340.6	328.6	184.3	104.5	Ø6	9
GD20-030G-4-EU	250.0	230.0		400.0	380.0	202.0	123.5	Ø6	15.5
GD20-037G-4-EU	250.0	230.0		400.0	380.0	202.0	123.5	Ø6	15.5
GD20-045G-4-EU	282.0	160.0	226.0	560.0	542.0	238.0	138.0	Ø9	25
GD20-055G-4-EU	282.0	160.0	226.0	560.0	542.0	238.0	138.0	Ø9	25
GD20-075G-4-EU	282.0	160.0	226.0	560.0	542.0	238.0	138.0	Ø 9	25
GD20-090G-4-EU	338.0	200.0	_	554.0	535.0	329.2	_	Ø 9.5	45
GD20-110G-4-EU	338.0	200.0	—	554.0	535.0	329.2		Ø 9.5	45

DIMENSÕES:

Montagem em flange de VFDs 3PH 400V 4–75kW e 3PH 230V 1,5–7,5kW

Montagem em flange de VFDs 3PH 400V 90-110kW (Dimensão (unidade: mm))

Model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Mounting hole diameter (d)	Screw	Weight (kg)	1
GD20-1R5G-2-EU	170.2	131	150	9.5	292	276	260	6	1 <mark>6</mark> 7	84.5	Ø 6	M5	3.1	
GD20-2R2G-2-EU	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5	3.1	
GD20-004G-2-EU	170.2	131	150	9.5	292	276	260	6	1 <mark>6</mark> 7	84.5	Ø 6	M5	3.1	
GD20-5R5G-2-EU	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5	5.58	
GD20-7R5G-2-EU	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5	5.83	
GD20-004G-4-EU	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5	3.1	
GD20-5R5G-4-EU	170.2	131	150	9.5	292	276	260	6	1 <mark>6</mark> 7	84.5	Ø 6	M5	3.1	
GD20-7R5G-4-EU	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5	5.58	
GD20-011G-4-EU	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5	5.58	
GD20-015G-4-EU	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5	5.83	
GD20-018G-4-EU	266	250	224	13	371	250	350.6	20.3	184.6	104	Ø 6	M5	9	
GD20-022G-4-EU	266	250	224	13	371	250	350.6	20.3	184.6	104	Ø 6	M5	9	
GD20-030G-4-EU	316	300	274	13	430	300	410	55	202	118.3	Ø 6	M5	15.5	
GD20-037G-4-EU	316	300	274	13	430	300	410	55	202	118.3	Ø 6	M5	15.5	
GD20-045G-4-EU	352	332	306	13	580	400	570	80	238	133.8	Ø 9	M8	25	
GD20-055G-4-EU	352	332	306	13	580	400	570	80	238	133.8	Ø 9	M8	25	
GD20-075G-4-EU	352	332	306	13	580	400	570	80	238	133.8	Ø 9	M8	25	
GD20-090G-4-EU	418.5	361	389.5	14.2	600	559	370	108.5	329.5	149.5	Ø 9.5	M8	45	
GD20-110G-4-EU	418.5	361	389.5	14.2	600	559	370	108.5	329.5	149.5	Ø 9.5	M8	45	

Dimensões do teclado

Dimensões do teclado

RESISTOR DE FRENAGEM:

Obs: A potência indicada para o resistor de frenagem será de acordo com a potência nominal do inversor, considera-se no mínimo 30% da mesma (Ex: Inversor de 2,2KW -> 30% = 0,66KW)

Quanto a resistência Ohmica segue tabela abaixo:

	Tipo de	Resistor de fi	enagem a Potêr travage	ncia consumida m (kW)	do resistor de	Resistor de	
Modelo	unidade de frenagem	100% de Frenagem (Ω)	10% de Frenagem (Ω)	50% de Frenagem (Ω)	80% de Frenagem (Ω)	frenagem mínimo (Ω)	
GD20-OR4G-S2-EU		361	0.06	0.30	0.48	42	
GD20-OR7G-S2-EU		192	0.11	0.56	0.90	42	
GD20-1 R5G-S2-EU		96	0.23	1.10	1.80	30	
GD20-2R2G-S2-EU		65	0.33	1.70	2.64	21	
GD20-OR4G-2-EU		361	0.06	0.3	0.48	131	
GD20-OR7G-2-EU		192	0.11	0.56	0.9	93	
GD20-1R5G-2-EU		96	0.23	1.1	1.8	44	
GD20-2R2G-2-EU		65	0.33	1.7	2.64	44	
GD20-004G-2-EU		36	0.6	3	4.8	33	
GD20-5R5G-2-EU		26	0.75	4.13	6.6	25	
GD20-7R5G-2-EU		19	1.13	5.63	9	13	
GD20-OR7G-4-EU		653	0.11	0.56	0.90	240	
GD20-1R5G-4-EU		326	0.23	1.13	1.80	170	
GD20-2R2G-4-EU	Unidade de frenagem integrada	Unidade de frenagem integrada	222	0.33	1.65	2.64	130
GD20-004G-4-EU			122	0.6	3	4.8	80
GD20-5R5G-4-EU		89.1	0.75	4.13	6.6	60	
GD20-7R5G-4-EU		65.3	1.13	5.63	9	47	
GD20-011- G-4-EU		44.5	1.65	8.25	13.2	31	
GD20-015G-4-EU		32.0	2.25	11.3	18	23	
GD20-018G-4-EU		27	3	14	22	19	
GD20-022G-4-EU		22	3	17	26	17	
GD20-030G-4-EU		17	5	23	36	17	
GD20-037G-4-EU		13	6	28	44	11.7	
GD20-045G-4-B-EU		10	7	34	54	8	
GD20-055G-4-B-EU		8	8	41	66	8	
GD20-075G-4-B-EU		6.5	11	56	90	6.4	
GD20-090G-4-B-EU		5.4	14	68	108	4.4	
GD20-110G-4-B-EU		4.5	17	83	132	4.4	

Escopo de ligação ideal (Potência):

GD20 Hardware.

LIGAÇÕES:

Resistor de Frenagem por range de potência:

Inversores Monofásicos ≤2,2KW

Inversores Trifásicos $380V \le 2,2KW$ ou $220V \le 0,75KW$

Inversores Trifásicos $380V \ge 4KW$ ou $220V \ge 1,5KW$

Terminais de potência:

Terminais 3PH do circuito principal (230V, ≤0,75kW e 400V, ≤2,2kW)

Terminais 3PH do circuito principal (230V, ≤1,5kW e 400V, 4-22kW)

Terminais 3PH do circuito principal (45-110kW)

LIGAÇÕES:

Diagrama de terminais de conexão para VFDs \geq 1,5kW (3PH 230V) e \geq 4kW (3PH 400V)

5	51	Sź	2	S	3	S4	4	HDI	A	12	Α	13	+1	0V	+2	24V	ŀ	11		R	O1B	RC	D1C	
	+24	4V	P۷	v	СС	DM	C	ОМ	Y1	AC	01	48	5+	485		+24	4V	н	2		R01	Α	RO	1C
																		<u> </u>						

Diagrama de terminais de conexão para VFDs \leq 2,2 kW (1PH 230V, 3PH 400V) e \leq 0,75 kW (3PH 230 V)

F	RO1A	RO1B	RO10	С	S1	Sź	2	S3	S4	HD	I Y1	Al2	AI	3 +10	VC					
	RO2	A RO2	BR	O2C	+	·24V	PW	CC	M	COM	GND	AO1	AO2	485+	485-	+	24V	H1	+24V	H2

Тіро	Nome do terminal	Descrição de função	Especificação técnica	
Comunicação	485 +	Comunicação	Interface de comunicação Modhus 485	/
Comunicação	485-	modbus 485		/
	S1		1. Impedância interna: 3.3KΩ 2. 12-30V	
	S2		2. 12-30V de entrada de tensão está disponível	
	S3	Entradas Digitais	3. O terminal é o terminal de entrada de direção	
	S4		dupla 4. Frequência de entrada: 1kHz	
Entradas e Saídas Digitais	HDI	Canal de entrada de alta frequência	Esse terminal pode ser usado como canal de entrada de alta frequência 50kHz Ciclo de trabalho: 30%-70%	
	PW	Fonte de alimentação digital	Terminal de entrada de alimentação externa para circuitos de entrada digital Faixa de potência: 12 V - 30 V	
	Y1	Saída digital	Capacidade de contato: 50mA/30V; Faixa de frequência de saída: 0-1 kHz;	
CTO .	24V-H1	Entrada STO 1	 Entrada redundante de parada de torque segura (STO), conectada externamente ao contato NC, STO atua quando o contato está aberto e a unidade interrompe a saída; 	
310	24V-H2	Entrada STO 2	 O cabo de sinal de entrada seguro deve ser cabo de proteção dentro de 25m. Ao empregar a função STO, desmonte a placa de curto-circuito nos terminais. 	

		the second s				
Fonte 24V	+24V COM	Fonte de alimentação 24V	Fonte de alimentação externa de 24V±10% e a corrente máxima de saída é de 200mA. Geralmente usados como fonte de alimentação de operação de entrada e saída digital ou fonte de alimentação de sensor externo			
Entradas e Saídas Analógicas	10v	Fonte de alimentação de referência externa de 10V	Fonte de alimentação de referência de 10V Corrente de saída máxima: 50mA como a fonte de alimentação de ajuste da resistência do potenciômetro externo do potenciômetro: 5kΩ acima			
	AI2	Entrada analógica	 Faixa de entrada: Al2 tensão e corrente podem ser escolhidas: 0–10V/0–20mA; Al3:-10V–+10V. Impedância de entrada: entrada de tensão: 20kΩ; entrada de corrente: 500Ω. 3. A tensão ou a 			
	AI3		entrada de corrente podem ser ajustadas pelo interruptor dip. 4. Resolução: O mínimo Al2/Al3 é 10mV/20mV quando 10V corresponde a 50Hz			
	A01		 Faixa de saída: tensão de 0–10V ou corrente de 0–20mA; A tensão ou corrente de saída é definida por 			
	AO2	Saida anaiogica	jumpers ou interruptor de alternância; 3. Erro ±1%, 25°C; 4. Há apenas um AO1 para VFDs ≤ 2.2kW			
	RO1A	Relé 1 contato NO				
	RO1B	Relé 1 contato NC	1. Capacidade de contato: 3A/AC250V, 1A/DC30V;			
Saídas a relé	RO1C	Relé 1 comum	2. Por favor, note que ele não deve ser usado			
	RO2A	Relé 2 contato NO	como saída de interruptor de alta frequência;			
	RO2B	Relé 2 contato NC	3. Ha apenas uma saida de rele para VFDs ≤2.2kW.			
	RO2C	Relé 2 comum				

GD20 Hardware.

LIGAÇÕES:

Ligação física das entradas digitais **<u>NPN fonte interna</u>**:

Ligação física das entradas digitais **PNP fonte interna**:

Ligação física das entradas digitais **<u>NPN fonte Externa</u>**:

Ligação física das entradas digitais **PNP fonte Externa**:

LIGAÇÕES:

Ligação física das entradas Analógicas:

Ligação do circuito de segurança (STO):

Ligação de saídas digitais e a relé:

LIGAÇÕES:

Ligação de saídas analógicas:

Visão geral das ligações físicas:

GD20 Software aspectos gerais:

INVT Workshop é um software dedicado aos equipamentos INVT como Sevos motores, Inversores e acesso remoto, com facilidade de acesso e parametrização o próprio programa possui as bibliotecas de cada modelo de equipamento, no caso de inversores desde o modelo mais básico como GD10 até modelos mais complexos como o GD350-19 para sistemas de elevação de carga.

Como base de explicação para o quick start estamos considerando o inversor GD20-EU, ao selecionar na tela inicial o tipo Inversores (VFD), Clique em New Project e selecione GD20-EU

Basic Operation New project Clear 1. © G020-EU-V1.04-2023103333 C/IVVT/INVT Workshop/Projects/G022-V1.04-202310 2. © G027-V1.01-20230928132 C/INVT/INVT Workshop/Projects/G022-V1.01-2023092813 COmmunication type Start address 1 End address 2 Port Baud rate 9200 V Parity bit Even parity Data bit 8 Stop bit 1 Stop Stop Stop Stop Stop Stop Stop Stop	INVT Workshop V2.5.0.6.20230906 Project(P) Tool(I) Help(H) P Recent New Open		
Recently Opened Project Clear 1. [P GD20-EU-V1.04-20231031331 * Cr/INVT/INVT Workshop/Projects/GD20-EU-V1.04-202310 * 2. [P GD27-V1.01-20230928113 * Cr/INVT/INVT Workshop/Projects/GD27-V1.01-2023092811 * Port Baud rate 19200 Parity bit Even parity Data bit 8 Stop bit 1 * * Stop bit 1 * *	Basic Operation New project Open project	Wizard Communication Project Summary Device Info Model GD20-EU V Version V1.04 V Industry /	×
2. IP GD27.V1.01-202309281132 Start address I End address Z C:/INVT/INVT Workshop/Projects/GD27-V1.01-2023092811 Port Baud rate 19200 Port Port Ven parity Data bit 8 Ven parity Data bit 8 Ven parity Stop bit 1 Ven parity Single Multiple	Recently Opened Project Clear 1. [P] GD20-EU-Y1.04-202311031331 ¥ C:/IWVT/IWVT Workshop/Projects/GD20-EU-V1.04-2023110 ¥	Name GD20-EU-V1.04-1 Communication COM	
Stop bit 1 Stop bit 0 Multiple	2. [P] GD27-VL01-202309281132 ¥ C:/INVT/INVT Workshop/Projects/GD27-VL01-2023092811	Start address 1 End address 2 Port Baud rate 19200 Parity bit Even parity Data bit 8	
		Stop bit 1 V Single O Multiple	

Para efetuar a conexão com o software alguns parâmetros do inversor devem ser alterados assim como a ligação física da comunicação modbus RS485 com o computador

Model GD20	-EU Version V1.04	✓ Industry / ✓	
Name GD20)-EU-V1.04-1	Communication COM V	
Communicatio	on type		
Start	address 1	End address 2	
Port	~	Baud rate 19200 🗸	
Parity	bit Even parity 💙	Data bit 8	
Stop b	oit 1 🗸		/
	 Single 	○ Multiple	$\left(\right)$
1/2		Cancel Do not show again.	

P14.00 - Endereço de	P14.01 - Taxa de transmissão	P14.02 - Verificação de bits digitais
comunicação local	de comunicação	
	0: 1200BPS	0: No parity check (N, 8, 1) for RTU
	1: 2400BPS	1: Even parity check (E, 8, 1) for RTU
Nó de rede, qualquer	2: 4800BPS	2: Odd parity check (O, 8, 1) for RTU
valor acima de 1	3: 9600BPS	3: No check (N, 8, 2) for RTU
	4: 19200BPS	4: Even parity check (E, 8, 2) for RTU
	5: 38400BPS	5: Odd parity check (O, 8, 2) for RTU
	6: 57600BPS	

A ligação fisica deverá ser realizada dos bornes 485+ e 485- do inversor para um conversor 485 para USB:

Após ter realizado a ligação física e alteração dos parâmetros pode-se conectar ao inversor para iniciar as parametrizações.

Para um visual inicial do software explicaremos de forma geral a localização dos grupos de parâmetros assim como algumas funções especificas.

INVT Workshop V2.5.0.6.20230906 Immed(A) Resident(B) Ten(T) V(mul(A) Hele(H)											2023-11-24 16:14:18	¥ = e ×
	0											•
Funcode Oscilloscope Control panel Configuration History	Settings											
Project pane 9 ×	Funcode							5 × 5	Status pa	rameters		1 ×
GD20-EU-V1.04-202311241609		🔒 🔒	C	8	٩ - ١	e - 1			Curren	t Followed	1	
E Funcode	Import E	xport Print Re	fresh current group	Refresh all grou	p Search Comp	bare Copy		_	Index	Name	Value 0: Offline	
P00 group Basic function group P01 group Start/stop control group	P00 group E	asic function group	o 🖸	Current unlus	Min unlun	Man unlug	Default			Set frequency	0.00	
P02 group Motor 1 parameter group	P00.00	No write dur	Speed control m	2: SVPWM control	0	2	2	•	017	Output framework	0.00	
P04 group V/F control group	P00.01	Read and w	Run command c	0: Keypad (LED	0	2	0	-	017	Domos seference	0.00	
P05 group Input terminal group P06 group Output terminal group	P00.02	🚂 Read only	Reserved	0			0		017	Output voltage	0.00	
P07 group HMI group	P00.03	😥 No write dur	Max output freq	50.00	P00.04	400.00	50.00	Ha n	P17	Output current	0.0	
P09 group PID control group	P00.04	😥 No write dur	Upper limit of ru	50.00	P00.05	P00.03	50.00	Ha	P17	Motor speed	0.0	
P10 group Simple PLC and multi-step speed control P11 group Protective parameter	P00.05	😥 No write dur	Upper limit of ru	0.00	0.00	P00.04	0.00	Ha	P17	Torque current	0.0	
P13 group Synchronous motor control parameter group P14 group Serial communication function group	P00.06	🌽 Read and w	A frequency co	0: Set via keypa	0	11	0		P17	Excitation current	0.0	
1 Frequently modified	P00.07	🌽 Read and w	B frequency co	2: Set via Al2	0	11	2	-	P17	Motor power	0.0	
- Monitor funcodes	P00.08	🌽 Read and w	B frequency co	0: Max output fr	0	1	0		 	Output torque	0.0	
Compare defaults A. Drive faults	P00.09	🌽 Read and w	Combination mo	0: A	0	5	0	-	P17	Estimated moto	0.00	
🕞 Status	P00.10	🥥 Read and w	Keypad set freq	50.00	0.00	P00.03	50.00	Ha	P17	DC hus unitage	0.0	
	P00.11	🥥 Read and w	Acc time 1	0.0	0.0	3600.0	Depend on model	s	P17	Digital input ter	0	
	P00.12	🥖 Read and w	Dec time 1	0.0	0.0	3600.0	Depend on model	s	P17	Digital output te	0	
	P00.13	🌽 Read and w	Running directio	0: Runs in the d	0	2	0	-	P17-	Digital adjustm	0.00	
	P00.14	🌽 Read and w	Carrier frequenc	0.0	1.0	15.0	Depend on model	kł r	P17	Torrue reference	0.0	
	P00.15	😼 No write dur	Motor paramete	0: No operation	0	3	0	-	P17	Linear sneed	0	
	P00.16	🌽 Read and w	AVR function sel	1: Valid during t	0	1	1		P17	Reserved	0	
	P00.17	Reither rea	Reserved	••••		65535	0		P17	Counting value	0	
	P00.18	😥 No write dur	Function param	0: No operation	0	6	0		P17	All input voltage	0.00	
1	1									row input soltage	0.00	

A esquerda no menu de parâmetros gerais temos a separação dos grupos P0 a P14, cada grupo possui uma lista de parâmetros que podem ser abertos pressionando duas vezes sobre o mesmo.

- M CD20 EU V/1 04 202211241600	P00 – Grupo de funções básicas
GD20-EU-V1.04-202311241009 GD20-EU-V1.04-1(Offline) Funcode	P01 – Grupo de comando start/stop
P00 group Basic function group P01 group Start/stop control group P02 group Motor 1 parameter group P03 group Vector control group P04 group V/F control group P05 group Input terminal group P06 group Output terminal group P07 group HMI group P08 group PID control group P09 group Simple PLC and multi-step speed con P11 group Protective parameter	 P02 – Grupo de parâmetros do motor P03 – Grupo de controle vetorial P04 – Grupo de controle V/F P05 – Grupo de parametrização das entradas
P13 group Synchronous motor control parameter P14 group Serial communication function group	P06 – Grupo de parâmetros das saídas
P07 Grupo da IHM P08 Grupo	de funções especiais P00 Grupo de PID

P08 – Grupo de funções especiais **P07** – Grupo da IHM P10 – Grupo de PLC simples e Multi-step speed P11 - Grupo de parâmetros de proteção

P09 – Grupo de PID

P13 – Grupo de Motor síncrono

P14 – Grupo de comunicação Serial

Acesso rápido ao histórico de modificações, alarmes, frequência, status....

— 1 Frequently modified					
— 📝 Change History					
— 💅 Monitor funcodes					
— III Compare defaults					
— 🔔 Drive faults					
— 🔚 Status					

Parâmetros frequentemente modificados Histórico de alterações de parâmetros Monitor de funções Comparação de alterações em relação ao inicial Histórico de alarmes Status do Inversor

Tela de parametrização principal variada de acordo com os grupos, para alterar um parâmetro basta pressionar sobre o valor corrente, escolher a função adequada e pressionar "enter" no teclado.

Funcode								8
lmport E	🗼 🚔 Export Print Re	C fresh current group	🔊 Refresh all group	o Search Comp	are Copy			
P00 group I	Basic function group	o 🗵						
Followed	Read/write mode	Name	Current value	Min. value	Max. value	Default	Unit	Modification tim
P00.00	🖻 No write dur	Speed control m	2: SVPWM control	0	2	2	-	
P00.01	🌽 Read and w	Run command c	0: Keypad (LED	0	2	0	-	
P00.02	属 Read only	Reserved	0	0	3	0	-	
P00.03	岁 No write dur	Max output freq	50.00	P00.04	400.00	50.00	Hz	
P00.04	房 No write dur	Upper limit of ru	50.00	P00.05	P00.03	50.00	Hz	
P00.05	😼 No write dur	Upper limit of ru	0.00	0.00	P00.04	0.00	Hz	
P00.06	🌛 Read and w	A frequency co	0: Set via keypa	0	11	0	-	
P00.07	🌽 Read and w	B frequency co	2: Set via Al2	0	11	2	-	
P00.08	🌽 Read and w	B frequency co	0: Max output fr	0	1	0	-	

A direita do software pode-se observar o grupo de parâmetros P17 os quais são monitores para visualização em tempo real de variáveis como: corrente de saída, velocidade atual de saída, tensão de entrada, estado atual do inversor, entre outros....

Status parameters # ×						
Current Followed						
Index	Name	Value				
🗌 РТ	Inverter state	0: Offline				
P17.00	Set frequency	0.00				
P17.01	Output frequency	0.00				
P17.02	Ramps reference frequency	0.00				
P17.03	Output voltage	0				
P17.04	Output current	0.0				
□ P17.05	Motor speed	0				
P17.06	Torque current	0.0				
P17.07	Excitation current	0.0				
P17.08	Motor power	0.0				
P17.09	Output torque	0.0				
P17.10	Estimated motor frequency	0.00				
P17.11	DC bus voltage	0.0				
P17.12	Digital input terminal state	0				
P17.13	Digital output terminal state	0				
P17.14	Digital adjustment	0.00				
P17.15	Torque reference	0.0				
P17.16	Linear speed	0				
P17.17	Reserved	0				
P17.18	Counting value	0				
P17.19	Al1 input voltage	0.00				

Caso esta tela não esteja aparecendo a direita pode-se chamá-la acessando o menu superior VIEW – Status Parameter.

Acessando o menu superior "Home" é possível acessar algumas funções especificas de controle e monitoramento.

Home(M)	Project(P)	Tool(T)	View(V)	Help(H)		
Funcode	Oscilloscope	Control pa	inel Con	I figuration	(S) History	O Settings

Funcode - Acesso aos parâmetros Gerais e tela de seleção de grupo

Osciloscope – Seleciona-se algumas variáveis para monitoramento em tempo real.

Control Panel – Painel de controle para teste rápido, Jog, envio de frequência, giro horário e anti-horário / Alteração de parâmetros da rede modbus

History - Acesso ao registro do histórico de alarmes do Inversor

Settings – Configura a tela que o software manterá aberta quando o inversor estiver em acionamento

Acessando o menu superior "Project" é possível acessar algumas funções especificas de abrir e salvar backup.

Acessando o menu superior "Tools" é possível acessar algumas funções especificas de: adição de mais inversores a rede ou conexão com os mesmos.

Acessando o menu superior "Help" é possível acessar os manuais de software e de funções, assim como verificar atualização no software.

Home(M)	Project(P) 1	īool(T) Vi	ew(V)	Help(H)			
Software Doc	Device Help	S Languag	e Start	ିତ୍ତ Update	() About	📝 Proposal	E Change History

GD20 Comandos Básicos.

AUTO-TUNING:

Comando Auto tuning ou comando de autoajuste é a principal função que deve ser realizada em primeiro passo, ajustando o inversor para trabalhar com o motor escolhido.

Como bem sabemos cada fabricante possui uma característica de enrolamento do motor, criando diferentes fatores de impedância, o auto-tuning servirá para auto identificar estes fatores, melhorando o desempenho de trabalho do inversor e por decorrência do motor.

Este processo só é realizado para modo vetorial, em trabalho escalar inserir apenas as informações de P2.01 a P2.04

Como realizar o autotunig:

Antes de iniciar por favor zerar todos os parâmetros em P00.18, valor 1, fará restaurar os parâmetros para default de fábrica.

Este processo diferente do que conhecemos em servos motores deve ser realizado com o **motor desacoplado** do sistema, isto porque fará apenas a identificação do motor e seus fatores.

Autotuning – parâmetros de P02-01 a P02-04 os números a serem escritos são encontrados na plaqueta ou carcaça do motor como mostra exemplo abaixo.

Parâmetro	Texto	Descritivo
P02.01	Potência Nominal	Escrever a potência em Watts do motor. (W)
P02.02	Frequência Nominal	 Escrever a Frequência de trabalho do motor. (HZ)
P02.03	Velocidade Nominal	Escrever a Velocidade nominal do motor. (RPM)
P02.04	Tensão Nominal	Escrever a tensão do motor (V)
P00.15	Modo de Auto-tuning Rotativo	"1" para autotuning rotativo

GD20 Comandos Básicos.

AUTO-TUNING:

Baseado na plaqueta do motor apresentado em imagem acima vamos para um exemplo de como ficariam os parâmetros deste inversor para o auto-tuning.

ioueg ^w	30JUN2017 1037018844	
∼3 (₩(HP-cv)3.0(V 220/38 ₩1735Hz € ₩2186.5 AMB 4	4.0)篇100L 認然認識。 0	жа 5 8
8 <u>5 N IP55</u> → W2 JU2 JV2 ≈ JU1 JV1 JW1 ▲ L1 L2 L3	S1 AH. 1000 34 Kg → 0 ^{W2} U2 V2 34 Kg → 6206-2 S U1 V1 W1 → 6205-2 Y L1 L2 L3 MOBIL POLYREX	ZZ EM
6) CE		•

Como podemos observar todas as informações necessárias para a realização do auto-tuning se encontram na plaqueta do motor,

Desta forma precisamos apenas identificálas e colocá-las nos parâmetros indicados

Vamos ao exemplo de identificação.

P02.01- Potência Nominal – Escrever a potência em Watts do motor. (Vermelho)

P02.02- Frequência Nominal – Escrever a Frequência de trabalho do motor. (Verde)

P02.03- Velocidade Nominal- Escrever a Velocidade nominal do motor. (Azul)

P02.04- Tensão Nominal – Escrever a tensão do motor. (Amarelo)

Para finalizar o Auto-tuning vá até o parâmetro P00.15 insira o valor "1" modo rotativo, e confirme, após pressione o botão START da tela de seu inversor.

Ao pressionar Start o motor passará por 3 estágios:

Run-1 Motor em frequência 0HZ.

Run-2 Motor em 50% de sua capacidade de frequência.

Run-3 Motor em 100% de sua capacidade de frequência.

O processo é automaticamente finalizado!!!

GD20 Comandos Básicos. CONTROLE DE VELOCIDADE (Analógica):

> O controle analógico de velocidade é um dos modos mais utilizados por se tratar de um modo de movimento constante com controle simplificado de porta de painel onde girando o potenciômetro pode-se controlar o nível de frequência de comando de 0HZ ao máximo parametrizado.

> O esquema de ligação a seguir se refere ao potenciômetro conectado ao canal analógico 2 e 3, vale ressaltar que o canal analógico 1 será do potenciômetro no painel do inversor:

Analógica 1:

Ligação Analógica 2 e 3:

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Aciona giro em sentido horário
P05.02	Função Terminal S2	Valor 2 – Aciona giro em sentido anti-horário

A segunda parte da parametrização se deve pelo comando de frequência, comando através da analógica:

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P00.06	Comando de frequência	Valor 2 - Controle via analógica AL2
P05.37	Tensão mínima Al2	Valor equivalente a tensão mínima (V)
P05.38	Velocidade mínima Al2	Valor da velocidade mínima (% de P0.03)
P05.39	Tensão máxima Al2	Valor equivalente a tensão máxima (V)
P05.40	Velocidade máxima Al2	Valor da velocidade máxima (% de P0.03)
P05.41	Filtro Al2	Tempo em "s" para atingir a velocidade (acc)

GD20 Comandos Básicos.

CONTROLE DE VELOCIDADE (Multi-Step-Speed):

O controle de velocidade de múltiplos passos é mais utilizado em sistemas com alteração de velocidade de movimento constante, porém pré-determinados seu controle é realizado através de acionamentos binários nas entradas digitais do inversor, contendo até 16 velocidades pré-programadas pode-se declarar uma velocidade para cada parte do movimento da máquina.

O esquema acima se refere a uma situação em que o operador possui 3 velocidades perceba que a cada determinado passo, o operador ativa entradas que variam a velocidade prédeterminada.

Para a situação colocada como exemplo segue o seguinte esquema de ligação ao lado.

Entrada S1 – Botão de início de operação com sentido horário

Entrada S2 – Terminal 1 do binários multi step speed

Entrada S3 – Terminal 2 do binários multi step speed

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Aciona giro em sentido horário
P05.02	Função Terminal S2	Valor 16 – Multi-step speed terminal 1
P05.03	Função Terminal S3	Valor 17 – Multi-step speed terminal 2

A segunda parte da parametrização se deve pelo comando de frequência, comando através das velocidades pré-programadas:

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P00.06	Comando de frequência	Valor 6 - Controle via multi-step-speed
P10.02	Velocidade Multi step speed 0	Valor da velocidade multi – step – speed 0 (% de P0.03)
P10.04	Velocidade Multi step speed 1	Valor da velocidade multi – step – speed 1 (% de P0.03)
P10.06	Velocidade Multi step speed 2	Valor da velocidade multi – step – speed 2 (% de P0.03)
P00.11	Aceleração linear	Valor da aceleração linear em segundos
P00.12	Desaceleração linear	Valor da desaceleração linear em segundos

Funcionamento:

Este método de acionamento funciona através do chamado binário, ou seja, são 16 possibilidade de velocidades pré-determinadas de Multi step speed 0 a multi step speed 15.

Desta forma temos 4 bits -

- Multi step speed terminal 1
- Multi step speed terminal 2
- Multi step speed terminal 3
- Multi step speed terminal 4

Caso o modo Multi step esteja acionado poderemos variar usando estes terminais:

- Apenas o start sem nenhum outro terminal acionará o "multi step speed 0" P10.02
- Start + terminal 1 acionará o "multi step speed 1" P10.04
- Start + terminal 2 acionará o "multi step speed 2" P10.06
- Start + terminal 1 + Terminal 2 acionará o "multi step speed 3" P10.06

E assim por diante, a tabela abaixo pode ajudar na construção da lógica binária:

Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 4	OFF							
step	0	1	2	3	4	5	6	7

step	8	9	10	11	12	13	14	15
Terminal 4	ON	ON						
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON

CONTROLE DE VELOCIDADE (Entrada rápida HDI):

O controle de velocidade pôr entrada rápida é utilizado em sistemas com alteração de velocidade de movimento constante e se aproxima ao controle mestre e escravo, esta entrada cuja capacidade é de 50Khz pode ser usada com uma saída pwm de clp ou a fase de um encoder em linha.

GD20 Comandos Básicos.

O esquema de ligação abaixo demonstra a ligação de um encoder, considerando que apenas uma fase será utilizada para este acionamento:

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.00	Função Terminal HDI	Valor 0 – HDI utilizada como entrada rápida
P05.01	Função Terminal S1	Valor 1 – Aciona giro em sentido horário

A segunda parte da parametrização se deve pelo comando de frequência, comando através das velocidade em HDI:

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P00.06	Comando de frequência	Valor 4 - Controle via entrada HDI
P05.50	Freq mínima de entrada	Frequência mínima na entrada HDI (Khz)
P05.51	Velocidade mínima	Valor da velocidade mínima (% de P0.03)
P05.52	Freq máxima de entrada	Frequência máxima na entrada HDI (Khz)
P05.53	Velocidade máxima	Valor da velocidade máxima (% de P0.03)
P05.54	Filtro HDI	Tempo em "s" para atingir a velocidade (acc)

O controle de velocidade pôr Keypad é utilizado em sistemas com pouca alteração de velocidade, visto que como se altera direto em seu painel de controle seja pelo parâmetro ou pelo próprio potenciômetro AL1 o acesso é mais restrito, desta forma este tipo de controle é mais utilizado em esteiras por exemplo, situação na qual uma vez ajustado o sistema chega a rodar por horas sem alteração alguma.

Neste comando não há necessidade de nenhuma ligação física considerando que todos os acionamentos serão realizados via painel de controle, a imagem abaixo mostra a aparência do painel frontal.

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 0 – Controle via Keypad

A segunda parte da parametrização se deve pelo comando de frequência, comando através do parâmetro p00.10 (keypad) ou AL1 (Potenciômetro Keypad):

Controle via Keypad:

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P00.06	Comando de frequência	Valor 0 - Controle via Keypad (P00.10)
P00.10	Frequência de operação	Valor da velocidade desejada (HZ)
P00.11	Aceleração	Valor da Aceleração linear (s)
P00.12	Desaceleração	Valor da Desaceleração linear (s)

Controle via potenciômetro analógica 1 (AL1)

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P00.06	Comando de frequência	Valor 1 - Controle via AL1
P05.32	Tensão mínima Al1	Valor equivalente a tensão mínima (V)
P05.33	Velocidade mínima Al1	Valor da velocidade mínima (% de P0.03)
P05.34	Tensão máxima Al1	Valor equivalente a tensão máxima (V)
P05.45	Velocidade máxima Al1	Valor da velocidade máxima (% de P0.03)
P05.46	Filtro Al1	Tempo em "s" para atingir a velocidade (acc)

Em ambos os modos de controle de velocidade o start e stop é realizado pelos botões do painel como mostra figura abaixo:

Para a operação

Para facilitar o acesso ao painel de comando pode-se utilizar o keypad externo preso a porta do painel elétrico através do conector RJ11/RJ45

GD20_ky2 – Interface Remota Keypad exclusiva para o GD20 com a função de copiar e colar os dados para upload ou download de parâmetros.

Moldura de instalação Keypad GD (125 x 90 x 35) mm

CONTROLE DE VELOCIDADE (Modbus):

O controle de velocidade pôr modbus comumente utilizado em sistemas onde é optado o uso de redes industriais em integração com periféricos como IHM, CLP ou outros.

Este sistema é escolhido por sua facilidade de integração assim como redução de fiação no sistema visto que é utilizado apenas um par trançado para 485+ e 485-.

Este comando possui a sua parametrização dividida em três partes: Comando, controle e rede.

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Rotação em sentido horário

A Segunda parte da parametrização se deve pelo controle de velocidade que deve ser indicada via modbus

Parâmetro	Texto	Descritivo
P00.06	Modo de controle de velocidade	Valor 8 – Controle via comunicação modbus
2001H	Endereço de frequência	Endereço utilizado para controle de frequência via rede modbus

A Terceira parte da parametrização é configurar o baudrate, endereço e bits do inversor na rede modbus.

Parâmetro	Texto	Descritivo
P14.00	Endereço – Modbus	Endereço do escravo na rede modbus
P14.01	Baudrate – Modbus	Velocidade de transmissão de dados:
		4: 19200BPS 5: 38400BPS 6: 57600BPS
P14.02	Protocolo - Modbus	0: (N, 8, 1) for RTU / 1: (E, 8, 1) for RTU
		2: (O, 8, 1) for RTU / 3: (N, 8, 2) for RTU
		4: (E, 8, 2) for RTU / 5: (O, 8, 2) for RTU

CONTROLE DE TORQUE (Analógica):

O controle analógico de torque ou limitador de torque via analógica, é utilizado em sistemas de tracionamento ou em aplicações de pressão forçando o próprio motor a parar ao atingir o torque delimitado.

O esquema de ligação a seguir se refere ao potenciômetro conectado ao canal analógico 2 e 3, vale ressaltar que o canal analógico 1 será do potenciômetro no painel do inversor:

Analógica 1:

Ligação Analógica 2 e 3:

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Aciona giro em sentido horário
P05.02	Função Terminal S2	Valor 2 – Aciona giro em sentido anti-horário

A segunda parte da parametrização se deve pelo comando de torque, comando através da analógica:

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 3 - Controle via analógica AL2
P05.37	Tensão mínima Al2	Valor equivalente a tensão mínima (V)
P05.38	Torque mínimo Al2	Valor do torque mínima (% de P0.03)
P05.39	Tensão máxima Al2	Valor equivalente a tensão máxima (V)
P05.40	Torque máximo Al2	Valor do torque máxima (% de P0.03)
P05.41	Filtro Al2	Tempo em "s" para atingir a velocidade (acc)

CONTROLE DE TORQUE (Keypad):

O controle de torque pôr Keypad é utilizado em sistemas com pouca alteração de torque, visto que como se altera direto em seu painel de controle seja pelo parâmetro ou pelo próprio potenciômetro AL1 o acesso é mais restrito, desta forma este tipo de controle é mais utilizado em processos de produção contínua, onde o material é sempre o mesmo ou com pouca alteração.

Neste comando não há necessidade de nenhuma ligação física considerando que todos os acionamentos serão realizados via painel de controle, a imagem abaixo mostra a aparência do painel frontal.

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 0 – Controle via Keypad

A segunda parte da parametrização se deve pelo comando de torque, comando através do parâmetro p03.12 (keypad) ou AL1 (Potênciometro Keypad):

Controle via Keypad:		
Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 1 - Controle via Keypad (p3.12)
P03.12	Torque de operação	Valor do torque desejado (-300% +300%)
P03.13	Filtro de torque	Tempo para alcançar o torque desejado (s)
P00.12	Desaceleração	Valor da Desaceleração linear (s)
P03.16	Velocidade máxima	Velocidade máxima sentido horário (HZ)
P03.17	Velocidade máxima	Velocidade máxima sentido anti-horário (HZ)

Controle via potenciômetro analógica 1 (AL1)

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 2 - Controle via analógica 1 (AL1)
P05.32	Tensão mínima Al1	Valor equivalente a tensão mínima (V)
P05.33	Torque mínimo Al1	Valor da torque mínima (% de P0.03)
P05.34	Tensão máxima Al1	Valor equivalente a tensão máxima (V)
P05.45	Torque máximo Al1	Valor da torque máxima (% de P0.03)
P05.46	Filtro Al1	Tempo em "s" para atingir a velocidade (acc)

Em ambos os modos de controle de torque o start e stop é realizado pelos botões do painel como mostra figura abaixo:

Para facilitar o acesso ao painel de comando pode-se utilizar o keypad externo preso a porta do painel elétrico através do conector RJ11/RJ45

GD20_ky2 – Interface Remota Keypad exclusiva para o GD20 com a função de copiar e colar os dados para upload ou download de parâmetros.

Moldura de instalação Keypad GD (125 x 90 x 35) mm

GD20 Comandos Básicos.

CONTROLE DE TORQUE (Modbus):

O controle de torque pôr modbus comumente utilizado em sistemas onde é optado o uso de redes industriais em integração com periféricos como IHM, CLP ou outros. Este sistema é escolhido por sua facilidade de integração assim como redução de fiação no sistema visto que é utilizado apenas um par trançado para 485+ e 485-.

Este comando possui a sua parametrização dividida em três partes: Comando, controle e rede. A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo	
P00.01	Comando de start/stop	Valor 1 - Controle via terminais	
P05.01	Função Terminal S1	Valor 1 – Rotação em sentido horário	

A Segunda parte da parametrização se deve pelo controle de torque que deve ser indicada via modbus

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 7 - Controle via Modbus
2004H	Endereço de torque	Endereço utilizado para controle de Torque via
		rede modbus

A Terceira parte da parametrização é configurar o baudrate, endereço e bits do inversor na rede modbus.

Parâmetro	Texto	Descritivo
P14.00	Endereço – Modbus	Endereço do escravo na rede modbus
P14.01	Baudrate – Modbus	Velocidade de transmissão de dados: 4: 19200BPS 5: 38400BPS 6: 57600BPS
P14.02	Protocolo - Modbus	0: (N, 8, 1) for RTU / 1: (E, 8, 1) for RTU 2: (O, 8, 1) for RTU / 3: (N, 8, 2) for RTU 4: (E, 8, 2) for RTU / 5: (O, 8, 2) for RTU

GD20 Comandos Básicos.

INTEGRAÇÃO VELOCIDADE + TORQUE (Analógico):

O controle analógico de torque ou limitador de torque via analógica, é utilizado em sistemas de tracionamento ou em aplicações de pressão forçando o próprio motor a parar ao atingir o troque delimitado, a integração com o controle de velocidade via analógico permite ao operador configurar a velocidade máxima atingida quando o torque do motor estiver com 100% de sua capacidade.

O esquema de ligação a seguir se refere ao potenciômetro conectado ao canal analógico 2 e 3, vale ressaltar que o canal analógico 1 será do potenciômetro no painel do inversor:

<u>Analógica 1:</u>

Ligação Analógica 2 e 3:

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Aciona giro em sentido horário
P05.02	Função Terminal S2	Valor 2 – Aciona giro em sentido anti-horário

A segunda parte da parametrização se deve pelo comando de torque, comando através da analógica:

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 3 - Controle via analógica AL2
P05.37	Tensão mínima Al2	Valor equivalente a tensão mínima (V)
P05.38	Torque mínimo Al2	Valor do torque mínima (% de P0.03)
P05.39	Tensão máxima Al2	Valor equivalente a tensão máxima (V)

and the second		
P05.40	Torque máximo Al2	Valor do torque máxima (% de P0.03)
P05.41	Filtro Al2	Tempo em "s" para atingir a velocidade (acc)

A terceira parte da parametrização se deve pelo comando de velocidade, comando através da analógica:

Parâmetro	Texto	Descritivo
P03.14 e	Comando de velocidade	Valor 3 - modo de comando de velocidade por
P03.15		analógica 3 quando o tipo de controle de torque
		estiver ligado
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P05.42	Tensão mínima Al3	Valor equivalente a tensão mínima (V)
P05.43	Velocidade mínima Al3	Valor da velocidade mínima (% de P0.03)
P05.44	Tensão média Al3	Valor equivalente a tensão média (V)
P05.45	Velocidade média Al3	Valor da velocidade média (% de P0.03)
P05.46	Tensão máxima Al3	Valor equivalente a tensão máxima (V)
P05.47	Velocidade máxima Al3	Valor da velocidade máxima (% de P0.03)
P05.48	Filtro Al3	Tempo em "s" para atingir a velocidade (acc)

Funcionamento:

Neste processo o operador possui:

- 1 botão retentivo Start/Stop, movimento em sentido único
- 1 Potenciômetro para o comando de torque
- 1 Potenciômetro para o comando de velocidade

A variação do potenciômetro de 0 a 10V gerará o sinal que será convertido pelo inversor para percentual, considerando o default de fabrica teríamos a seguinte escala (0V = 0% do torque / 10V = 100% do torque), desta forma digamos que o motor tenha 10Nm de torque este valor seria equivalente a 100% do torque.

A variação da velocidade via analógica se deve a escala entre a entrada de tensão e o valor máximo possível de ser atingido estabelecido em p00.03 e p00.04, considerando a velocidade padrão de 60HZ está seria a representação da escala equivalente a 10V no potenciômetro.

Com o torque e a velocidade selecionados em percentual o operador poderá realizar o acionamento via botão para iniciar o giro, estas mudanças de torque e velocidade podem ser realizadas durante a operação também.

OBS: Este inversor é para aplicações gerais, sendo assim o controle de torque não é sensível, ou seja, em baixo torque poderá não apresentar um bom funcionamento. Aplicações onde há necessidade de controle de torque fino deverá ser consultado o time técnico da Kalatec Automação para dimensionamento de inversores específicos.

GD20 Comandos Básicos.

INTEGRAÇÃO VELOCIDADE +TORQUE (Keypad):

O controle de torque e velocidade pôr Keypad é utilizado em sistemas com pouca alteração, visto que, como se altera direto em seu painel de controle seja pelo parâmetro ou pelo próprio potenciômetro AL1 o acesso é mais restrito, desta forma este tipo de controle é mais utilizado em processos de produção contínua, onde o material é sempre o mesmo ou com pouca alteração.

Neste comando não há necessidade de nenhuma ligação física considerando que todos os acionamentos serão realizados via painel de controle, a imagem abaixo mostra a aparência do painel frontal.

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 0 – Controle via Keypad

A segunda parte da parametrização se deve pelo comando de torque, comando através do parâmetro p03.12 (keypad) ou AL1 (Potênciometro Keypad):

Controle de torque via Keypad:

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 1 - Controle via Keypad (p3.12)
P03.12	Torque de operação	Valor do torque desejado (-300% +300%)
P03.13	Filtro de torque	Tempo para alcançar o torque desejado (s)
P00.12	Desaceleração	Valor da Desaceleração linear (s)
P03.16	Velocidade máxima	Velocidade máxima sentido horário (HZ)
P03.17	Velocidade máxima	Velocidade máxima sentido anti-horário (HZ)

OU Controle de torque via potenciômetro analógica 1 (AL1)

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 2 - Controle via analógica 1 (AL1)
P05.32	Tensão mínima Al1	Valor equivalente a tensão mínima (V)
P05.33	Torque mínimo Al1	Valor do torque mínima (% de P0.03)
P05.34	Tensão máxima Al1	Valor equivalente a tensão máxima (V)
P05.45	Torque máximo Al1	Valor do torque máxima (% de P0.03)
P05.46	Filtro Al1	Tempo em "s" para atingir a velocidade (acc)

Controle de velocidade máxima via Keypad:

Parâmetro	Texto	Descritivo
P03.14 e	Comando de velocidade	Valor 0 - modo de comando de velocidade por
P03.15		Keypad quando o tipo de controle de torque estiver ligado
P03.16	Velocidade máxima	Velocidade máxima sentido horário (HZ)
P03.17	Velocidade máxima	Velocidade máxima sentido anti-horário (HZ)

OU Controle de velocidade máxima via Analógica 1 (AL1):

Parâmetro	Texto	Descritivo
P00.03 e	Frequência máxima de	Valor em Hz máximo desejado em 100% do
P00.04	comando	potenciômetro
P03.14 e	Comando de velocidade	Valor 1 - modo de comando de velocidade por
P03.15		analógica 1 quando o tipo de controle de torque
		estiver ligado
P05.32	Tensão mínima Al1	Valor equivalente a tensão mínima (V)
P05.33	Velocidade mínima Al1	Valor da velocidade mínima (% de P0.03)
P05.34	Tensão máxima Al1	Valor equivalente a tensão máxima (V)
P05.45	Velocidade máxima Al1	Valor da velocidade máxima (% de P0.03)
P05.46	Filtro Al1	Tempo em "s" para atingir a velocidade (acc)

Em ambos os modos de controle de torque/ velocidade o start e stop é realizado pelos botões do painel como mostra figura abaixo:

Para facilitar o acesso ao painel de comando pode-se utilizar o keypad externo preso a porta do painel elétrico através do conector RJ11/RJ45

Conector para keypad externo RJ11/RJ45

GD20_ky2 – Interface Remota Keypad exclusiva para o GD20 com a função de copiar e colar os dados para upload ou download de parâmetros.

Moldura de instalação Keypad GD (125 x 90 x 35) mm

OBS: Este inversor é para aplicações gerais, sendo assim o controle de torque não é sensível, ou seja, em baixo torque poderá não apresentar um bom funcionamento. Aplicações onde há necessidade de controle de torque fino deverá ser consultado o time técnico da Kalatec Automação para dimensionamento de inversores específicos.

GD29 Comandos Básicos.

INTEGRAÇÃO VELOCIDADE +TORQUE (Modbus):

O controle de torque e velocidade pôr modbus comumente utilizado em sistemas onde é optado o uso de redes industriais em integração com periféricos como IHM, CLP ou outros.

Este sistema é escolhido por sua facilidade de integração assim como redução de fiação no sistema visto que é utilizado apenas um par trançado para 485+ e 485-.

Este comando possui a sua parametrização dividida em quatro partes: Comando, controle e rede.

A primeira parte da parametrização se deve pelo comando start – stop, comando de acionamento:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 1 - Controle via terminais
P05.01	Função Terminal S1	Valor 1 – Rotação em sentido horário

A Segunda parte da parametrização se deve pelo controle de torque que deve ser indicada via modbus

Parâmetro	Texto	Descritivo
P00.00	Modo do Inversor	Modo de controle vetorial sem sensor 0
		Para controle de torque e velocidade sem
		necessidade de encoder
P03.11	Comando de torque	Valor 7 - Controle via Modbus
2004H	Endereço de torque	Endereço utilizado para controle de Torque via
		rede modbus

A Terceira parte da parametrização se deve pelo controle de Velocidade que deve ser indicada via modbus

Parâmetro	Texto	Descritivo
P03.14 e	Comando de	Valor 6 - modo de comando de velocidade por
P03.15	velocidade	Modbus quando o tipo de controle de torque
		estiver ligado

ġ,			
	2005H	Endereço de	Endereço utilizado para controle de velocidade
		velocidade horária	máxima horária via rede modbus
	2006H	Velocidade anti-	Endereço utilizado para controle de velocidade
-		horária	máxima anti-horária via rede modbus

A quarta parte da parametrização se deve a configurar o baudrate, endereço e bits do inversor na rede modbus.

Parâmetro	Texto	Descritivo	
P14.00	Endereço – Modbus	Endereço do escravo na rede modbus	
P14.01	Baudrate – Modbus	Velocidade de transmissão de dados:	
		0: 1200BPS	
		1: 2400BPS	
		2: 4800BPS	
		3: 9600BPS	
		4: 19200BPS	/
		5: 38400BPS	
		6: 57600BPS	(
P14.02	Protocolo - Modbus	0: No parity check (N, 8, 1) for RTU	1
		1: Even parity check (E, 8, 1) for RTU	
		2: Odd parity check (O, 8, 1) for RTU	
		3: No check (N, 8, 2) for RTU	
		4: Even parity check (E, 8, 2) for RTU	
		5: Odd parity check (O, 8, 2) for RTU	
		6: No check (N, 7, 1) for ASCII	
		7: Even check (E, 7, 1) for ASCII	
		8: Odd check (O, 7, 1) for ASCII	
		9: No check (N, 7, 2) for ASCII	
		10: Even check (E, 7, 2) for ASCII	
		11: Odd check (O, 7, 2) for ASCII	
		12: No check (N, 8, 1) for ASCII	
		13: Even check (E, 8, 1) for ASCII	
		14: Odd check (O, 8, 1) for ASCII	
		15: No check (N, 8, 2) for ASCII	
		16: Even check (E, 8, 2) for ASCII	
		17: Odd check (O, 8, 2) for ASCII	

OBS: Este inversor é para aplicações gerais, sendo assim o controle de torque não é sensível, ou seja, em baixo torque poderá não apresentar um bom funcionamento. Aplicações onde há necessidade de controle de torque fino deverá ser consultado o time técnico da Kalatec Automação para dimensionamento de inversores específicos.

CONTROLE MODBUS RS485 EM GERAL:

Todo equipamento industrial hoje permite integração com uma rede de comunicação, o modbus é a rede padronizada em periféricos da indústria, protocolo este que possui fácil implementação e acesso aberto.

A utilização de rede RS485 RTU simplifica comandos variáveis, possibilitando com um único equipamento realizar processos diferentes em situações paralelas.

No manual acima vimos algumas integrações de rede movimentando apenas velocidade e torque, a seguir veremos outras funções passiveis de mudança com endereços fixos, assim como a possibilidade de alteração de qualquer parâmetro do inversor.

Par trançado para 485+ e 485-, ligação física da rede modbus:

Para o condicional de velocidade, torque e acionamento a parametrização pertinente é:

Parâmetro	Texto	Descritivo
P00.01	Comando de start/stop	Valor 2 - Controle via modbus
P00.06	Modo de controle de velocidade	Valor 8 – Controle via modbus
P3.11	Modo de torque	Valor 7 - Controle via Modbus

Para a parametrização do protocolo da rede temos o grupo P14, segue abaixo:

Parâmetro	Texto	Descritivo			
P14.00	Endereço – Modbus	Endereço do escravo na rede modbus			
P14.01	Baudrate – Modbus	Velocidade de transmissão de dados:			
		0: 1200BPS			
		1: 2400BPS			
		2: 4800BPS			
		3: 9600BPS			
		4: 19200BPS			
		5: 38400BPS			
		6: 57600BPS			
P14.02	Protocolo - Modbus	0: No parity check (N, 8, 1) for RTU			
		1: Even parity check (E, 8, 1) for RTU			

2: Odd parity check (O, 8, 1) for RTU
3: No check (N, 8, 2) for RTU
4: Even parity check (E, 8, 2) for RTU
5: Odd parity check (O, 8, 2) for RTU
6: No check (N, 7, 1) for ASCII
7: Even check (E, 7, 1) for ASCII
8: Odd check (O, 7, 1) for ASCII
9: No check (N, 7, 2) for ASCII
10: Even check (E, 7, 2) for ASCII
11: Odd check (O, 7, 2) for ASCII
12: No check (N, 8, 1) for ASCII
13: Even check (E, 8, 1) for ASCII
14: Odd check (O, 8, 1) for ASCII
15: No check (N, 8, 2) for ASCII
16: Even check (E, 8, 2) for ASCII
17: Odd check (O, 8, 2) for ASCII

Após parametrizados estes itens, desligue e ligue o inversor, desta forma todos os parâmetros serão salvos na eeprom do inversor e tornaram vigente o uso.

Protocolo recomendado para 80% dos casos:

- Baudrate 19200
- Protocolo 8, none, 1
- Modo RTU

Algumas funções já possuem endereços fixos, sendo eles apresentados em tabela abaixo:

Função	Endereço	Descrição dos dados	Características
		0001H: Execução para a frente	
		0002H: Execução inversa	
		0003H: Jog para a frente	
Comando de controle	2000H	0004H: Jog reversa	R/W
de comunicação		0005H: Parar	
		0006H: descelerar para parar	
		0007H: Redefinição de falha	
		0008H: Para o jog	
	2001H	Frequência de ajuste de comunicação (0–Fmax(unidade: 0,01Hz))	
Endereço da	2002H	Referência PID, intervalo (0–1000, 1000 corresponde a 100,0%)	R/W
de configuração	2003H	Feedback PID, intervalo (0–1000, 1000 corresponde a 100,0%)	R/W
	2004H	Valor de ajuste de torque (-3000– 3000, 1000 corresponde a 100,0% de	R/W

the second s	A CONTRACTOR OF A CONTRACTOR OF		
		a corrente nominal do motor)	
		A configuração de frequência limite	
	2005H	superior	R/W
		durante a rotação para frente (0–	
		Fmax (unidade: 0,01Hz))	
		A configuração do limite superior de	
	2006H	frequência durante a rotação reversa	R/W
		(0–Fmax (unidade: 0,01Hz))	
	2007H	O torque limite superior de	D/W
	200711	torque de eletromovimento (0–3000,	IX/ VV
		1000 corresponde a 100,0% do	
		corrente nominal do motor)	

	O torque limite superior do torque de		
2008H	frenagem (0–3000, 1000	R/W	
	corresponde a 100,0% da corrente		\frown
	nominal de		
	o motor)		C
	Palavra de comando de controle		
	especial Bit0–1: =00: motor 1 =01:		
	motor 2		
	=10: motor 3 =11: motor 4		
	Bit2: =1 controle de torque proibir		
	=0: controle de torque proibir	R/W	
2009Н	Bit3 inválido: =1 consumo de		
200711	energia claro		
	=0: sem consumo de energia		
	claro Bit4: -1 pré-excitante		
	proibição pré-excitante		
	Bit5: =1 Travagem DC =0:		
	Proibição de travagem DC		
200AH	Comando do terminal de entrada	R/W	
200111	virtual,		
	Intervalo: 0x000–0x1FF		
200BH	Comando de terminal de saída	R/W	
	Virtual,		
	Intervalo: UXUU–UXUF		
	valor de ajuste de tensão (especial		
200CH	(0, 1000, 1000, correspondence	R/W	
	(0–1000, 1000 corresponde a		

	the second state in the second state in the second state in the second state is a second state in the se		
		100,0% da tensão nominal do	
		motor)	
		Configuração de saída AO 1	
	200DH	(-1000–1000, 1000 corresponde a	R/W
		100.0%)	
		Configuração de saída AO 2	
	200EH	(-1000–1000, 1000 corresponde a	R/W
		100.0%)	
		0001H: Execução para a frente	
	VFD 2100H	0002H: Execução para a frente	
SW 1 do VED		0003H: Parar	_
		0004H: Erro	R
		0005H: Estado POFF	
		0006H: Estado pré-excitado	

		Bit0: =0: a tensão do barramento não			
		está estabelecida =1: a tensão do			
		barramento é estabelecida			
		Bi1–2: =00: motor 1 =01: motor 2			
		=10: motor 3 =11: motor 4			
		Bit3:=0:motor assíncrono=1: motor			
	2101H	síncrono			
		Bit4: =0: pré-alarme sem sobrecarga			
CW 1 J. VED		=1:pré-alarme de sobrecarga	Л		
SW I do VFD		Bit5–Bit6 :=00: controle do teclado	ĸ		
		=01: controle de terminal			
		=10: controle de comunicação			
Código de falha VFD	2102H	Consulte a instrução de tipo de falha	R		
Código de		GD20-EU 0x0180			
identificação de	2103H		R		
o VFD					
Frequência de	200011	0–Fmáx,	р		
funcionamento	3000H	unit:0,01Hz	ĸ		
Definin frequêncie	200111	0–Fmax,	р		
Dennir frequencia	3001H	unit:0.01Hz	ĸ		
Tanção do hamamanto	200211	0.0–2000.0V, Compatível com os	р		
Tensao do Darramento	3002H	unit:0.1V endereços de	ĸ		
Tanção do coído	20021	0–1200V, comunicação de GD,	D		
Tensão de salua	30031	unit: 1V CHF100A,	ĸ		
Corrente de coíde	200411	0.0–3000.0A, e série CHV100.	D		
	3004H	unit:0.1A	K		
Velocidade de rotação	300514	0–65535,	D		
velocitade de lotação	300311	unit:1RPM	K		

		000000000	
		-300.0-	
Potância de saída	3006H	300.0%,	D
i otencia de salua	300011	unit:0.1%	K
		-250.0-	
Torque de seíde	20071	250.0%,	D
Torque de salua	300/H		K
		unit: 0.1%	
		-100.0-	
Configuração de PID	3008H	100.0%,	R
		unit: 0.1%	
		-100.0-	
Feedback PID	3009H	100.0%,	R
		unit: 0.1%	
Estado de entrada	300AH	000–1FF	R
Estado de entrada	300BH	000–1FF	R
AT 1	200011	0.00–10.00V,	D
ALI	JUUCH	unit:	ĸ

Os endereços acima solucionam grande parte das funções necessárias em modbus, porém caso alguma aplicação necessite de uma alteração diferente da lista citada, o seguinte processo pode ser realizado:

Converte-se o número equivalente ao parâmetro para hexadecimal, utilizando o resultado como endereço visado na comunicação:

Exemplo: Aceleração e desaceleração – Parâmetros P00.11 e P00.12

Conversão valor 11 = 000B Hex Conversão valor 12 = 000C Hex

Estes valores serão utilizados como endereço para escrita em seu periférico, tomamos como exemplo a construção de uma bateria modbus, com objetivo de escrever a aceleração e ler a desaceleração.

3	6	000B	100	
Endereço	Comando	Endereço dos	Dados de	Verificação de
VFD	Modbus	parâmetros	parâmetros	CRC

3	3	000C		
Endereço	Comando	Endereço dos	Dados de	Verificação de
VFD	Modbus	parâmetros	parâmetros	CRC

Neste caso comando 6 é usado para leitura e 3 é usado para escrita (comando padrão da rede modbus), escrevendo o endereço B equivalente ao parâmetro P00.11 e lendo o endereço C equivalente ao parâmetro P00.12.

Exemplo extra: Parâmetro P05.02 - Valor 502 - Conversão 1F6 Hex

GD20 Parâmetros de feedback.

A visualização do feedback de certos fatores de trabalho podem auxiliar um time de manutenção a verificar o esforço de certos equipamentos industriais, conseguindo assim criar uma rotina de manutenção preventiva assim e prospectar atualizações dos equipamentos para aumento de vida útil e evitar perdas na produção.

Estes parâmetros podem ser visualizados de duas formas:

Visualização através do software, menu lateral direito (Status Parameter):

INVT Workshop V2.5.0.6.20230906	ww(V) Holo(H)									2023-11-28 17:11:17	• - • ×
	Configuration	(S) History	© Settings					_			
ct pane	• × Funcode	e					6	> Status paramete	rs		P - 8
GD20-EU-V1.04-202311241609		-	🖹 C	8	0		æ., 1	Current	Followed	1	
E Funcode	Import	Export	Print Refresh current group	Refresh all group	Search	Compare	Сору	Index	Inverter state	Value 0: Offline	
Change History								P17.00	Set frequency	0.00	
— Monitor funcodes — III Compare defaults								P17.01	Output frequency	0.00	
Drive faults Statur								□ P17.02	Ramps reference frequency	0.00	
Jatus -								P17.03	Output voltage	0	
								P17.04	Output current	0.0	
								P17.05	Motor speed	0	
								P17.06	Torque current	0.0	
								P17.07	Excitation current	0.0	
								P17.08	Motor power	0.0	
								P17.09	Output torque	0.0	
								P17.10	Estimated motor frequency	0.00	
								P17.11	DC bus voltage	0.0	
								P17.12	Digital input terminal state	0	
								P17.13	Digital output terminal state	0	
								P17.14	Digital adjustment	0.00	
								P17.15	Torque reference	0.0	
								P17.16	Linear speed	0	
								P17.17	Reserved	0	
								P17.18	Counting value	0	
								P17.19	Al1 input voltage	0.00	

Visualização através do Display frontal:

<u>Todos os parâmetros do grupo P17 são monitores das variáveis, como: corrente, torque, velocidade atual e outros. (consultar o manual geral)</u>

Realizando Backup das parametrizações via Software

O Processo de Backup da parametrização é um meio de segurança e agilidade com produção de maquinários em quantidade, visto que ao invés de configurar todos os parâmetros em um segundo inversor, é gerado um arquivo com as alterações realizadas no inversor primário para o secundário.

<u>Para realizar o procedimento de backup teremos que realizar a conexão do inversor com o software INVT_Workshop,</u>

Para efetuar a conexão com o software alguns parâmetros do inversor devem ser alterados assim como a ligação física da comunicação modbus RS485 com o computador

🕭 Wiza	ard	Communicatio	on 🕨 Proje	ct 🕨 S	iummary		×
Device Model	info GD20-EU	Version V1.04	✓ In	dustry	/	~	
Name	GD20-EU-V1.	04-1	C	ommunio	cation COM	~	
Commu	inication type-						
	Start address	1	End a	ddress	2		
	Port	~	Baud	rate	19200	~	
	Parity bit	Even parity 🗸 🗸	Data	bit	8	\sim	
	Stop bit	1 ~					
		 Single 	\bigcirc N	lultiple			
)
1/3				Cance	I	Do	not show again.

Parâmetros para comunicação com o inversor: O protocolo definido no inversor segundo os parâmetros abaixo, deverão estar iguais aos inseridos no software na tela acima.

P14.00 - Endereço de	P14.01 - Taxa de transmissão	P14.02 - Verificação de bits digitais
comunicação local	de comunicação	
	0: 1200BPS	0: No parity check (N, 8, 1) for RTU
	1: 2400BPS	1: Even parity check (E, 8, 1) for RTU
Nó de rede, qualquer	2: 4800BPS	2: Odd parity check (O, 8, 1) for RTU
valor acima de 1	3: 9600BPS	3: No check (N, 8, 2) for RTU
	4: 19200BPS	4: Even parity check (E, 8, 2) for RTU
	5: 38400BPS	5: Odd parity check (O, 8, 2) for RTU
	6: 57600BPS	

A ligação fisica deverá ser realizada dos bornes 485+ e 485- do inversor para um conversor 485 para USB:

Com o sistema conectado faça a parametrização necessária e quando tiver finalizado siga o passo a passo de backup abaixo:

Acione o botão Refresh all groups, para atualizar todos os grupos de parâmetros com os valores atuais

INVT Workshop V2.5.0.6.20230906 Home(M) Project(P) Tool(T) View(V)	Help(H)						
Funcode Oscilloscope Control panel Config	uration H	Settings					
Project pane 4 ×	Funcode				_		
GD20-EU-V1.04-202311241609	lmport E	ixport Print Ref	C fresh current group	🚫 Refresh all group	o Search Comp	are Copy	
P00 group Basic function group P01 group Start/stop control gro	POO group E	Basic function group					
P02 group Motor 1 parameter gr	Followed	Read/write mode	Name	Current value	Min. value	Max. value	Default
P03 group Vector control group	P00.00	📝 No write dur	Speed control m	2: SVPWM control	0	2	2
P04 group V/F control group	P00.01	🌽 Read and w	Run command c	0: Keypad (LED	0	2	0
P06 group Output terminal group	P00.02	属 Read only	Reserved	0	0	3	0
P07 group HMI group P08 group Enhanced function gr	P00.03	😥 No write dur	Max output freq	50.00	P00.04	400.00	50.00
P09 group PID control group	P00.04	😥 No write dur	Upper limit of ru	50.00	P00.05	P00.03	50.00
P11 group Protective parameter	P00.05	😼 No write dur	Upper limit of ru	0.00	0.00	P00.04	0.00
P13 group Synchronous motor c P14 group Serial communication	P00.06	🌽 Read and w	A frequency co	0: Set via keypa	0	11	0
the frequently modified Change History	P00.07	📝 Read and w	B frequency co	2: Set via Al2	0	11	2
Monitor funcodes	P00.08	🥖 Read and w	B frequency co	0: Max output fr	0	1	0
- A Drive faults	P00.09	🌽 Read and w	Combination mo	0: A	0	5	0
🗆 🚋 Status	P00.10	🥖 Read and w	Keypad set freq	50.00	0.00	P00.03	50.00
	P00.11	🌽 Read and w	Acc time 1	0.0	0.0	3600.0	Depend on model

Agora acione o botão Export, selecione os grupos desejados e pressione Export Selected para gerar um arquivo com todos os parâmetros desejados:

Fun	code		Export(GD20-EU-V1.04-1)	×
1	•		Select	
	•		E V Funcode	
Im	port	Export		
DOC	L	Posto fu		
POU	group	J Basic Iu	🗄 🛨 🗹 P02 group Motor 1 parameter group	
Fol	owed	Read/\		
	P00.00) 🍺 No	o	
			⊕ ✓ P05 group Input terminal group	
	P00.01	l 🌌 Re	ea → 🗹 P06 group Output terminal group	
	100.02	e en Re	²⁰ ⊥ ⊇ P08 group Enhanced function group	
	P00.03	3 🍺 No	o H ≥ P09 group PID control group	
		-	H ∨ P10 group Simple PLC and multi-step speed control	
	P00.04	1 📝 No	H ✓ P11 group Protective parameter	
	000.01	0	→ P13 group Synchronous motor control parameter group	
	P00.03	5 😿 NO	o	
	P00.06	5 📿 Re		
			Status parameters	
	P00.07	7 <i> J</i> Re	ed Charge Nister	
			Change history	
	P00.08	3 🌌 Re		
	00.0.		Device Online status	
	P00.10) <i> R</i> e		
		-		
	P00.11	1 🌽 Re	ea	
	DOO 1'			
	-00.1	2 🚽 ке		
	P00.13	3 📝 Re		
Ē			Export selected	
		4 / <i>J</i> n_		

Este mesmo arquivo poderá ser utilizado para realizar o download para um novo inversor, seguindo os seguintes passos.

Pressione o botão Import e abra o arquivo desejado:

Selecione os Grupos desejados e pressione OK, desta forma o procedimento está concluído!!

Import funcode(GD20-EU_V1.04))		×
Select	Name	Import value	Current value
🖃 🗹 Funcode			
🕀 🗹 POO group Basic functio			
🕂 🗹 P01 group Start/stop con			
Η 🗹 P02 group Motor 1 para			
🕀 🗹 P03 group Vector control			
🕂 🗹 P04 group V/F control gr			
🛨 🗹 P05 group Input terminal			
🕀 🗹 P06 group Output termin			
🛨 🗹 P07 group HMI group			
🛨 🗹 P08 group Enhanced fun			
🛨 🗹 P09 group PID control gr			
🛨 🗹 P10 group Simple PLC an			
P11 group Protective par			
🛨 🗹 P13 group Synchronous			
🕂 🗹 P14 group Serial commu			
	OK	Canaal	
	UK	Cancer	

Realizando Backup das parametrizações via Keypad

O Processo de Backup da parametrização é um meio de segurança e agilidade com produção de maquinários em quantidade, visto que ao invés de configurar todos os parâmetros em um segundo inversor, é gerado um arquivo com as alterações realizadas no inversor primário para o secundário.

A utilização do Keypad é uma forma de aumentar a agilidade no setor de produção, evitando o uso do software.

Para realizar o procedimento de backup via keypad é necessário utilizar o conjunto externo:

Conector para keypad externo RJ11/RJ45

Para realizar o backup dos parâmetros para o Keypad acesse o parâmetro P07.01 e selecione a função de valor 1 (Faça upload do parâmetro da função local para o Teclado)

Com os parâmetros copiados, retire o keypad deste inversor e conecte-o em outro, acesse novamente o parâmetro P07.01 e selecione uma das funções descritas em tabela abaixo:

Parâmetros	Função	Descritivo
P07.01	Copiar parâmetros	0: Sem operação
		1: Faça upload do parâmetro da função local para o
		teclado
		2: Baixe o parâmetro de função do teclado para
		endereço local (incluindo os parâmetros do motor)
		3: Baixe o parâmetro de função do teclado para
		endereço local (excluindo o parâmetro do motor do
		Grupo P02 e P12)
		4: Baixe os parâmetros de função do teclado para
		endereço local (somente para o parâmetro do motor do
		Grupo P02 e P12)
		Nota: Após terminar 1–4, o parâmetro irá restaurar
		para 0 e o upload e o download fazem
		não inclui P29.

OBS: Vale salientar que mesmo com o backup sendo copiado, sempre será necessário realizar o procedimento de auto-tuning!

Procedimento de backup finalizado!!

Alarmes do Inversor GD20

Erro	Tipo de erro	Possível causa	Soluções
OUT1	[1] Unidade inversora Fase U	- Aceleração rápida; - IGBT módulo danificado;	 Aumentar o tempo de aceleração; Substituir a unidade;
OUT2	[2] Unidade inversora Fase V	- Erros causado por interferência;	Verificar fios do drive;Verifique se existe forte
OUT3	[3] Inversor unidade Fase W	Conexões do driveTerra em curto o circuito.	interferência causada por equipamentos externos.
OC1	[4] Sobre corrente durante aceleração	- Aceleração é muito rápida; Tensão baixa;	 Aumentar o tempo de aceleração; Verificar entrada de potência;
OC2	[5] Sobre corrente durante desaceleração	VFD Subdimensionado;Carga em excesso ou	- Selecione o VFD com potência superior;
OC3	[6] Sobrecorrente durante constante velocidade.	anormal; - Terra em curto o circuito ou perda de fase UVW; - Interferência externa; - A proteção de sobrecorrente não está aberta	 Verifique se a carga está em curto- circuito ou rotação não suave; Verificar a fiação de saída; Verificar ruídos externos;
OV1	[7] Sobretensão durante a aceleração	- Entrada de tensão anormal;	 Verificar o entrada de potência; Verifique se o tempo de desaceleração da carga é muito curto;

	[8] Sobretensão	- Sem componentes de freio;	ou o VFD inicia durante a rotação do
OV2	durante a	- Energia de frenagem fechada.	motor ou é necessária a instalação de
	desaceleração		componentes de frenagem dinâmica
OV2	[9] Sobretensão durante		- Instalar componentes de freio;
013	velocidade constante		_
	[10] Sub tensão no	- A tensão fornecida ao	- Verificar a tensão de entrada do
υv	barramento	inversor é baixa.	inversor e da linha.
		- A tensão fornecida ao	- Verificar grade de tensão;
		inversor é baixa.	- Reiniciar ou reavaliar motor atual;
	[11] Motor em	- O motor atual é incorreto;	- Verificar ou carregar e ajustar de
OLI	sobrecarga	- A parada do motor ou	torque do motor e auto-tuning.
		transientes de carga são muito	
		fortes.	
		 Aceleração rápida; 	- Aumentar o tempo de aceleração;
		- Reiniciar o drive com o	- Evite reiniciar antes de parar;
01.2	[12] VED sobrecarge	motor em movimento.	- Verificar a alimentação;
OL2	[12] VIDSOURCarga	- Tensão é baixa;	- Selecione um VFD maior
		- Carga em excesso;	- Selecione um motor apropriado.
		- Motor subdimensionado	
IDS	[13] Perda de fase	- Falta, perda ou flutuação	- Verificar entrada de potência
11 5	RST	na entrada R, S, T.	- Verificar instalação e fiação.
SPO	[14] Perda de fase	- Falta, perda ou flutuação	- Verificar saída de potência;
510	UVW	na saída U, V,W.	- Verificar motor e cabos.

			- Duto de ar está bloqueado ou	- Redistribuir componentes no
		[15] Modulo	cooler danificado;	painel;
	OH1	retificador	- A temperatura ambiente é	- Troque o canal de ar ou cooler;
-		superaqueceu	alta;	- Adicione componentes para baixar
			- Tempo em sobrecarga	a temperatura ambiente

OH2	[16] Modulo do inversor superaqueceu	 Duto de ar está bloqueado ou cooler danificado; A temperatura ambiente é alta; Tempo em sobrecarga 	 Verificar e reconectar; Mudar a potência da unidade; Mudar o painel de controle principal
FE	[17] Erro externo	- Erro de entrada digital externa	- Verificar o dispositivo externo
CE	[18] Erro de comunicação RS485	 A configuração da taxa de transmissão é incorreta; A falha ocorre no circuito de comunicação; Endereço incorreto; Ruídos na rede. 	 Definir taxa de transmissão apropriada Verifique a fiação da conexão de comunicação; Estabeleça um endereço de comunicação existente; Mude ou substitua a fiação ou melhore a interferência.
itE	[19] Detecção de erro atual	 Conexão do controle ao quadro; Potência assistente ruim; Componentes danificados; 	 Verificar os conectores. Mudar o painel de controle principal.
tE	[20] Erro durante o auto-tuning	 A capacidade do motor não corresponde ao inversor; Parâmetros do motor definidos incorretamente; O desvio entre os parâmetros do ajuste automáticoe os parâmetros padrões é alta; Ajuste automático ao longo do tempo. 	 Altere o modelo VFD; Defina os parâmetros do motor de acordo com a placa de identificação; Retire a carga do motor; Verifique o motor e as conexões Verifique se o limite superior de frequência é acima de 2/3 da frequência avaliada.
EEP	[21] EEPROM Operação em erro	- Erro ocorreu para R/W controle de parâmetros; - EEPROM danificada.	 Pressione STOP/RST para reiniciar; Mudar o painel de controle principal.
PIDE	[22] PID feedback desligado ou em erro	PID feedback desligado;PID feedback em erro	- Verificar o feedback do PID
AC	[23] Falta/erro na unidade de frenagem	 Falha no circuito de frenagem ou danos ao freio; Resistor de frenagem externo subdimensionado. 	 Verificar a unidade de frenagem ou trocar o freio; Re-dimensionar o resistor de frenagem externo.
END	[24] Tempo alcançado	 O tempo real de execução do VFD é maior que a configuração interna. 	- Entrar em contato com o fornecedor
OL3	[25] Eletrônica em sobrecarga	- O VFD reportará sobrecarga de acordo com o valor inserido	- Verifique a carga e o sobrecarga do pré-alarme inserido.

PCE	[26] Erro de comunicação com o teclado	-Teclado Danificado ou em falha - Cabo do teclado estálongo ou há forte interferência; - Circuitos de comunicação do teclado ou principal danificados	 Verificar o teclado e cabos; Verificar o ambiente e eliminar as possíveis interferências; Mudar hardware e levar para manutenção.
UPE	[27] Erro ao carregar os parâmetros	 Teclado Danificado ou em falha Cabo do teclado estálongo ou há forte interferência; Circuitos de comunicação do teclado ou principal danificados. 	 Verificar o teclado e cabos; Verificar o ambiente e eliminar as possíveis interferências; Mudar hardware e levar para manutenção.
DNE	[28] Parâmetro download erro	 Teclado Danificado ou em falha Cabo do teclado estálongo ou há forte interferência; Dados armazenados em erro 	 Verificar o ambiente e eliminar a interferência; Mudar hardware e levar para manutenção.; Faça uma cópia de segurança em um teclado novo.
ETH1	[32] Aterramento em curto-circuito alarme 1	- A saída do VFD este em curto-circuito com o chão;	- Verifique se a conexão do motor está normal;
ETH2	[33] Aterramento em curto-circuito alarme 2	 Falta de circuito de ligação entrada/saída Há uma grande diferença entre a potência do motor e a potência do VFD. 	 Substituir o painel de controle principal; Reiniciar motor parâmetros e garantir a parametrização correta; Verifique se os parâmetros de potência do motor no grupo P2 estão corretos.
LL	[36] Sobre carga na eletrônica	- O VFD faz um relatório de sobre carga como pré-alarme, de acordo com o valor parametrizado	- Verifique o valor parametrizado como pré-alarme de sobre carga
STO	[37] STO entradas desligadas	- STO função de segurança ativado	
STL1	[38] Canal H1 anormal	- Falha ou hardware interno o circuito do canal H1 está em falta.	- Substitua a chave STO; se o problema persistir contate o fabricante.
STL2	[39] Canal H2 anormal	- Falha ou hardware internoo circuito do canal H2 está em falta	- Substitua a chave STO; se o problema persistir contate o fabricante.
STL3	[40] Circuito interno STO anormal	- Falha ou hardware interno o circuito do canal H2 e H1não atendem a simultaneidade;	

Que esse conteúdo tenha agregado valor e conhecimento pra você!

Seu contato é importante para nós!

- www.kalatec.com.br
- Instagram @kalateceautomação
- Facebook kalatecautomação

NOSSAS FILIAIS:

Matriz Campinas – SP Rua Salto, 99Jd. do Trevo (19) 3045-4900

Filial São Paulo – SP Av. das Nações Unidas, 18.801 110 Andar(11) 5514-7680

Filial Joinville – SC R. Almirante Jaceguay, 3659 Bairro Costa e Silva(47) 3425-0042