

# GUIA RÁPIDO PARA COMUNICAÇÃO CANopen ENTRE



# CANOPER



# Sumário

| 1. INTRODUÇAO                                              |   |
|------------------------------------------------------------|---|
| 2. CONFIGURAÇÃO DO HARDWARE                                |   |
| 2.1 Ligação Física dos Servos (CN3)                        |   |
| 2.2 Configuração de Baud Rate (Velocidade de Transmissão)  | 5 |
| 2.3 Topologia da Rede                                      | 6 |
| 2.4 Resistor de Terminação                                 | 7 |
| 2.4 Cabos CANopen                                          |   |
| 2.5 Resumo das Precauções                                  |   |
| 3. PARAMETRIZAÇÃO NO DRIVE                                 |   |
| 3.1 Parâmetros no Drive – Configuração do Protocolo        |   |
| 4. WORD DE CONTROLE E STATUS                               | 9 |
| 4.1 Control Word (6040h)                                   | 9 |
| 4.2 Status Word (6041h)                                    |   |
| 5. MODOS DE OPERAÇÃO                                       |   |
| 5.1 Modo Posição                                           |   |
| 5.1.1 Procedimento de Operação (Posição)                   |   |
| 5.1.2 Lista de Objetos relacionados para o Modo Posição    |   |
| 5.1.3 Control Word (6040h) para o Modo Posição             |   |
| 5.1.4 Status Word (6041h) para o Modo Posição              |   |
| 5.1.5 Exemplo de Aplicações com Modo Posição               |   |
| 5.2 Modo Velocidade                                        |   |
| 5.2.1 Procedimento de Operação (Velocidade)                |   |
| 5.2.2 Lista de Objetos relacionados para o Modo Velocidade |   |
| 5.2.3 Exemplo de Aplicação com Modo Velocidade             |   |
| 5.3 Modo Torque                                            |   |
| 5.3.1 Procedimento de Operação (Torque)                    |   |
| 5.3.2 Lista de Objetos relacionados para o Modo Torque     |   |
| 5.3.3 Exemplo de Aplicação com Modo Torque                 |   |
| 5.4 Modo Torque                                            |   |
| 5.4.1 Procedimento de Operação (Torque)                    |   |
| 5.4.2 Lista de Objetos relacionados para o Modo Torque     |   |
| 5.4.3 Exemplo de Aplicação com Modo Torque                 |   |
| 6. CONFIGURAÇÃO DE SOFTWARE                                |   |
| 6.1 Servo Plorer                                           |   |
| 6.2 CANopen Builder                                        |   |
| 6.2.1 Upload do Mapa EDS no Software                       |   |
| 6.2.2. Configuração do Mapa EDS (PDO's)                    |   |
| 6.3 ISPSoft                                                |   |
| 7. FLUXOGRAMA                                              |   |
| 8. CONSIDERAÇÕES FINAIS                                    |   |



# 1. INTRODUÇÃO

Nesse guia rápido, vamos criar um passo a passo de como configurar e manusear o servo motor da INVT com o CLP Delta (linha DVP) utilizando o protocolo CANopen.

Sabemos que o protocolo CANopen é muito utilizado em aplicações de posicionamento do servo motor e feedback de posição. A vantagem da utilização desse protocolo é a economia dos meios físicos (cabos) para acionamento dos motores e a velocidade de transmissão de dados, que pode chegar até 1Mbps.

A rede CANopen também facilita o controle de dois ou mais eixos, onde podemos controlar os motores através dos endereços fixos de cada servo (nó). A topologia linha, como veremos adiante neste documento, sintetiza a ligação física de fios e permite uma organização mais limpa do painel, além da facilidade no controle de variáveis.

Os servos motores INVT suportam o protocolo CAN em seus drives, porém, é ideal a análise e codificação correta dos modelos de drives. Os modelos da linha DA180 e DA200 Standard não possuem esse recurso para comunicação, mesmo obtendo a porta RJ45 incorporada, com isso, é necessário a validação do código com o time técnico da Kalatec.

Os CLP's abordados neste documento serão os CLP's da Delta, linha DVP. Usamos para teste de comunicação a CPU DVP28SV2 e o módulo de expansão para rede CANopen DVPCOPM. Os CLP's da linha DVP são modelos Slim, compactos e de baixo custo, por isso, devemos sempre adequar ao projeto a expansão DVPCOPM para montar uma rede CAN.

Utilizaremos softwares gratuitos (disponíveis no site da Kalatec Automação) para configuração da rede. As informações foram retiradas dos manuais dos fabricantes INVT e Delta para montar esse Quick Start. Para maiores informações, entrar em contato com a engenharia da Kalatec Automação. O contato do nosso suporte técnico e vendas se encontra no final desse documento.



# 2. CONFIGURAÇÃO DO HARDWARE

#### 2.1 Ligação Física dos Servos (CN3)

A ligação física da rede CANopen é simples, usamos o CAN\_LOW (-) e o CAN\_HIGH (+) para a transmissão de informações, e o GND para proteção. Usualmente, a conexão é feita em um soquete RJ-45 nos periféricos. A porta de comunicação dos servos INVT é o CN3. Nesse conector estão presentes os protocolos disponíveis no drive: Modbus e CANopen. Para realizar a ligação física do CANopen, devemos conectar os pinos 7 e 8 (CAN\_L e CAN\_H, respectivamente) e o pino 2 (GND), todos do conector RJ-45. Segue abaixo a figura ilustrando:



**OBS:** Para os modelos DA180, devemos verificar se no código do produto ele vem com a letra "C" no final do código. Exemplo: DA180-S2R8SG0 (C). Esse final "C" significa que o driver é Modbus e CANopen. Caso não tenha essa letra, o driver não é compatível com o protocolo CAN.





#### 2.2 Configuração de Baud Rate (Velocidade de Transmissão)

O Baud Rate é a velocidade de transmissão dos dados na comunicação CAN. Podemos configurálo de acordo com a necessidade. Quanto mais rápido a velocidade de transmissão, menor é a distância entre os dispositivos. Segue tabela abaixo:

| Communication       | Communication |
|---------------------|---------------|
| baud rate           | distance      |
| 1Mbit/s             | 25m           |
| 500kbit/s (Default) | 100m          |
| 250kbit/s           | 250m          |
| 125kbit/s           | 500m          |
| 50kbit/s            | 1000m         |
| 20kbit/s            | 2500m         |

A taxa de transmissão mais convencional é 500kbit/s. Inclusive, com os CLP's da Delta, a taxa de transmissão **DEVE SER CONFIGURADA** para **500kbit/s** ou menor.

Devemos configurar o mesmo Baud Rate para todos os dispositivos da rede. No caso dos servos INVT, alteramos o parâmetro P4.02 para 1 (500kbit/s).



#### 2.3 Topologia da Rede

Sabemos que as redes industriais possuem topologias distintas. Para cada rede de protocolo diferente, uma arquitetura de dispositivos é indicada. Para a rede CAN não é diferente. Todos os dispositivos da rede devem ser ligados EM SÉRIE. Não deve ser usada a ligação em estrela.



Podemos exemplificar também uma rede CANopen com servos conforme desenho abaixo:



Ao final de cada servo, devemos colocar um resistor de terminação. Isso delimita o final da rede. A seguir abordaremos um pouco mais sobre esse resistor.



#### 2.4 Resistor de Terminação

Os resistores de terminação são imprescindíveis em uma rede de comunicação. Esse resistor de 120 $\Omega$  é colocado no **último dispositivo** da rede CAN a fim de delimitar o final da rede e evitar reflexões de sinal e desvio de corrente referente a esse sinal de comunicação.

Alguns dispositivos já fornecem na caixa do produto esse resistor, outros já têm incorporado no próprio periférico. Já no caso dos servos da INVT, esse resistor deve ser confeccionado pelo próprio usuário. Abaixo segue a ligação física:



O resistor de 120 $\Omega$  deve ser colocado nos pinos 7 e 8 do conector RJ45. Justamente no CAN (-) e no CAN (+).



#### 2.4 Cabos CANopen

Para a rede CAN pode ser usado cabos de rede convencionais RJ45, porém não é o mais indicado. O mais indicado é o cabo RJ45 blindado com proteções contra ruído e de dimensões no tamanho ideal para a ramificação da rede.





#### 2.5 Resumo das Precauções

- 1. Todos os dispositivos da rede CANopen devem ser conectados em série. Nunca realizar a conexão em estrela.
- 2. Um resistor de  $120\Omega$  deve ser conectado no último escravo na rede CANopen.
- 3. O ponto de amostra da comunicação CAN da estação mestre deve ser definido para 80%.
- 4. Para evitar interferência, é recomendável utilizar pares trançados blindados (STP) como cabos para conexão CAN.
- 5. Um cabo de conexão mais longo requer um chip CAN com maior capacidade de unidade.

# 3. PARAMETRIZAÇÃO NO DRIVE

#### 3.1 Parâmetros no Drive – Configuração do Protocolo

Para configurar o CANopen nos drives precisamos alterar apenas três parâmetros. Utilizamos o software ServoPlorer V4.18 para configuração. Seguem os parâmetros abaixo:

- 1. P0.03 (Control Mode Selection) para valor = 7 (CANopen Mode);
- P4.02 (CAN communication Baud Rate) para valor (0: 1Mbps; 1: 500kbps; 2: 250kbps; 3: 125kbps; 4: 50kbps; 5: 20kbps).



3. **P4.05** (CAN communication node) para valor **(1~127)**. Usualmente utilizamos o nó 1 para o mestre (CLP) e os demais dispositivos CAN, usamos a partir do nó 2.

Notas:

- Esses três parâmetros são validados somente após o servo ser reenergizado.
- Os endereços dos servos (nós) não podem se repetir ou ser o mesmo nó que o mestre.

## 4. WORD DE CONTROLE E STATUS

#### 4.1 Control Word (6040h)

A Control Word é um registro responsável por controlar o funcionamento do motor. Dentro desse registro você pode deixar o motor em Servo On/Off, habilitar para começar o movimento, Reset de alarmes, entre outros. Segue abaixo a tabela exemplificando a funcionalidade da Control Word.

A Control Word é composta por 16bits.

| 15~11                       | 10~9      | 8    | 7               | 6~4                               | 3                     | 2    | 1                   | 0         |
|-----------------------------|-----------|------|-----------------|-----------------------------------|-----------------------|------|---------------------|-----------|
| Específico do<br>Fabricante | Reservado | Halt | Reset<br>Alarme | Específico do Modo de<br>Operação | Habilitar<br>Operação | Stop | Habilitar<br>Tensão | Switch On |
| 0                           | 0         | 0    | М               | 0                                 | М                     | М    | М                   | М         |

LSB

MSB

MSB: Most Significant Bit (Bit mais significativo);

LSB: Least Significant Bit (Bit menos significativo);

**O**: Optional (Opcional);

M: Mandatory (Obrigatório);

Temos a relação abaixo dos 16 bits composto em tabelas para exemplificar o funcionamento de cada grupo.

Bits 0~3 e bit 7 são bits para controle de Status do Servo. Segue tabela com algumas funções:



|                      | Bits da Control Word |                       |      |                     |           |  |  |
|----------------------|----------------------|-----------------------|------|---------------------|-----------|--|--|
| COMANDO              | Reset Alarme         | Habilitar<br>Operação | Stop | Habilitar<br>Tensão | Switch On |  |  |
| Desligar             | 0                    | х                     | 1    | 1                   | 0         |  |  |
| Switch On            | 0                    | 0                     | 1    | 1                   | 1         |  |  |
| Switch On            | 0                    | 1                     | 1    | 1                   | 1         |  |  |
| Desabilitar Tensão   | 0                    | х                     | X    | 0                   | Х         |  |  |
| Stop                 | 0                    | х                     | 0    | 1                   | Х         |  |  |
| Desabilitar Operação | 0                    | 0                     | 1    | 1                   | 1         |  |  |
| Habilitar Operação   | 0                    | 1                     | 1    | 1                   | 1         |  |  |
| Reset Alarme         | 4                    | x                     | x    | x                   | x         |  |  |

Onde X indica que a operação não está envolvida e 👌 indica borda de subida.

| Bits 4, | 5,6 | e 8 são | bits | relacionado | s ao modo | de control | e. Segue | tabela co | om algumas | funções: |
|---------|-----|---------|------|-------------|-----------|------------|----------|-----------|------------|----------|
|         |     |         |      |             |           |            |          |           |            |          |

| Bit | Modo Velocidade | Modo Posição                     | Modo Homing | Modo<br>Interpolação           |
|-----|-----------------|----------------------------------|-------------|--------------------------------|
| 4   | rfg enable      | Novo Set-point                   | Start Home  | Habilitar modo<br>Interpolação |
| 5   | rfg unlock      | Mudar set-point<br>imediatamente | Reservado   | Reservado                      |
| 6   | rfg use ref     | absoluto/relativo Reservado      |             | Reservado                      |
| 8   | Halt            | Halt                             | Halt        | Halt                           |

#### Bits 9 e 10: Reservados;

#### Bits 11~15: Definidos pelo fabricante;

Esses são os bits da word de controle (control word) onde comandamos o servo. No próximo tópico, veremos os bits de status (status word) onde conseguimos monitorar o funcionamento do servo.

#### 4.2 Status Word (6041h)

A Status Word é um registro responsável por monitorar o funcionamento do motor. Dentro desse registro você pode averiguar informações como: status de servo on/off, status de alarme, servo ready, entre outras informações. Segue abaixo a tabela exemplificando a funcionalidade da Status Word.



A status word é composta por 16bits:

| Bit   | Descrição                    | м/о |
|-------|------------------------------|-----|
| 0     | Pronto para operar           | М   |
| 1     | Switch On                    | М   |
| 2     | Operação habilitada          | М   |
| 3     | Alarme                       | М   |
| 4     | Tensão habilitada            | М   |
| 5     | Stop                         | М   |
| 6     | 6 Switch On desabilitado     |     |
| 7     | Aviso                        | 0   |
| 8     | 8 Específico do fabricante   |     |
| 9     | 9 Remoto                     |     |
| 10    | 10 Término do posicionamento |     |
| 11    | 11 Fim de curso ativado      |     |
| 12~13 | Modo de operação específico  | 0   |
| 14~15 | Específico do fabricante     | 0   |

**O**: Optional (Opcional);

M: Mandatory (Obrigatório);

#### Bits 0~3 e 6 são bits relacionados ao modo de status. Segue tabela com algumas funções:

| Valor (Binário)     | Estado                      |
|---------------------|-----------------------------|
| xxxx xxxx x0xx 0000 | Não está pronto para operar |
| xxxx xxxx x1xx 0000 | Switch On desabilitado      |
| xxxx xxxx x01x 0001 | Pronto para operar          |
| xxxx xxxx x01x 0011 | Switch On                   |
| xxxx xxxx x01x 0111 | Operação habilitada         |
| xxxx xxxx x00x 0111 | Stop ativo                  |
| xxxx xxxx x0xx 1111 | Reação de falha ativa       |
| xxxx xxxx x0xx 1000 | Alarme                      |

Onde X indica que o bit não está envolvido.



# 5. MODOS DE OPERAÇÃO

#### 5.1 Modo Posição

Um servo drive (escravo) recebe um comando de posição transmitido por uma unidade mestre (CLP). A posição obtida pela conversão de comando de posição com base na relação do *Electronic Gear* (engrenagem eletrônica) é usada como *Target Position* (posição alvo) no controle de posição interno.

#### 5.1.1 Procedimento de Operação (Posição)

- 1. Defina 6060h: Mode of Operations para 1 (Modo Posição).
- 2. Defina 6081h: Profile Velocity para alterar a velocidade (unidade: RPM).
- 3. Defina **6083h (Acc) e 6084h (Dcc)**: **Profile Acceleration/Decceleration** para alterar a aceleração e desaceleração (unidade: ms).
- Defina Sub-1 e Sub-2 do 6093h: Position Factor para alterar o Electronic Gear (engrenagem eletrônica) do drive. Nesses parâmetros que definimos a resolução do servo. Sub-1 indica o numerador e o Sub-2 indica o denominador, correspondentes aos parâmetros P0.25 e P0.26 do driver, respectivamente.
- 5. Defina **607A**h: **Target Position** para alterar a posição em que o servo irá movimentar (unidade: definida pelo próprio usuário).
- Defina 6040h: Control Word para habilitar o servo e dar o trigger para o motor movimentar na posição programada. 0x0F indica habilitado. Para mais detalhes, volte para seção XXXXXXXX.
- 7. Leia **6064**h: **Position Actual Value** para obter o feedback de leitura da posição atual do servo.
- 8. Leia **6041h**: **Status Word** para obter o feedback dos status do servo (entradas acionadas, alarmes, servo ready, entre outras...).

| Index | Nome                       | Тіро       | Atribuição |
|-------|----------------------------|------------|------------|
| 6040h | Control Word               | UNSIGNED16 | RW         |
| 6041h | Status Word                | UNSIGNED16 | RO         |
| 6060h | Modes of Operation         | INTEGER8   | RW         |
| 6061h | Modes of Operation Display | INTEGER8   | RO         |
| 6062h | Position Demand Value      | INTEGER32  | RO         |
| 6063h | Position Actual Value*     | INTEGER32  | RO         |
| 6064h | Position Actual Value      | INTEGER32  | RO         |
| 6065h | Following Error Window     | UNSIGNED32 | RW         |

#### 5.1.2 Lista de Objetos relacionados para o Modo Posição



| 6067h | Position Window              | UNSIGNED32 | RW |
|-------|------------------------------|------------|----|
| 607Ah | Target Position              | INTEGER32  | RW |
| 6081h | Profile Velocity             | UNSIGNED32 | RW |
| 6093h | Position Factor              | UNSIGNED32 | RW |
| 6083h | Profile Acceleration         | UNSIGNED32 | RW |
| 6084h | Profile Decelaration         | UNSIGNED32 | RW |
| 60F4h | Following Error Actual Value | INTEGER32  | RO |
| 60FCh | Position Demand Value        | INTEGER32  | RO |

Nota: Na lista acima estão presentes os principais objetos para realizar a operação do modo posição. Caso a aplicação exija o controle de outras variáveis/objetos, consultar manual completo CANopen INVT, onde está presente a lista completa de objetos.

#### 5.1.3 Control Word (6040h) para o Modo Posição

| 15~9             | 8    | 7                | 6         | 5                             | 4              | 3~0              |
|------------------|------|------------------|-----------|-------------------------------|----------------|------------------|
| (Veja seção 4.1) | Halt | (Veja seção 4.1) | Abs / Rel | Mudar set-point imediatamente | Novo set-point | (Veja seção 4.1) |
| MSB              |      |                  |           |                               |                | LSB              |

MSB

| Nome                                | Valor | Descrição                                                 |
|-------------------------------------|-------|-----------------------------------------------------------|
| Novo cot point                      | 0     | Não assume uma posição desejada                           |
| Novo set-point                      | 1     | Assume a posição desejada                                 |
| Mudar set-point                     | 0     | Termina a posição atual e depois inicia a próxima posição |
| imediatamente 1 Interrompe a posiçã |       | Interrompe a posição atual e inicia a próxima posição     |
| Abs / Pol                           | 0     | Posicionamento em modo absoluto                           |
| ADS / NET                           | 1     | Posicionamento em modo relativo                           |
| Ualt                                | 0     | Executa posicionamento                                    |
| ndit                                | 1     | Stop no eixo com desaceleração                            |

#### 5.1.4 Status Word (6041h) para o Modo Posição

| 15~14            | 13   | 12                             | 11               | 10                 | 9~0                            |
|------------------|------|--------------------------------|------------------|--------------------|--------------------------------|
| (Veja seção 4.2) | Erro | Reconhecimento<br>do set point | (Veja seção 4.2) | Posição finalizada | <mark>(</mark> Veja seção 4.2) |
| MSB              |      |                                |                  |                    | LSB                            |



| Nome               | Valor | Descrição                                                      |
|--------------------|-------|----------------------------------------------------------------|
|                    | 0     | Halt = 0 posição alvo não atingida                             |
| Dosição finalizada | 0     | Halt = 1 eixo desacelera                                       |
| POSIÇAO IIIalizada | 1     | Halt = 0 posição alvo atingida                                 |
|                    | 1     | Halt = 1 velocidade do eixo é 0 (zero)                         |
| Reconhecimento     | 0     | O gerador de trajetória não assumiu o valor de posição (ainda) |
| do set point       | 1     | O gerador de trajetória assumiu o valor de posição             |
| Erro               | 0     | Executa posicionamento                                         |
| EIIO               | 1     | Stop no eixo com desaceleração                                 |

#### 5.1.5 Exemplo de Aplicações com Modo Posição



5.1.5.1 Modo Single Set Point



Se você estiver trabalhando no modo INCREMENTAL, você deve seguir os seguintes passos:

- 1. Defina **6040**h para **0x4F** (do qual o bit 6 é usado para definir o modo incremental e os bits 3 a 0 são usados para habilitar o driver).
- 2. Defina 607Ah para o comando de posição.
- Defina 6040h para 0x5F para acionar o comando de posição (o comando de posição é habilitado quando o valor de bit4 muda de 0 para 1).
- 4. O drive retorna bit12 (6041h) quando o bit4 muda de 0 para 1 (6040h) e a estação mestre exclui o valor de bit 4 (6040h) após receber 6041h para se preparar para transmitir o próximo comando de posição.

Se você estiver trabalhando no modo **ABSOLUTO**, você deve seguir os seguintes passos:

- 1. Defina 6040h para 0x0F.
- 2. Defina **607Ah** para o comando de posição.
- 3. Defina 6040h para 0x1F para habilitar o modo de posição.



4. O drive retorna **bit12 (6041h)** quando o **bit4** muda de **0** para **1 (6040h)** e a estação mestre exclui o valor de **bit 4 (6040h)** após receber **6041h** para se preparar para transmitir o próximo comando de posição.



5.1.5.2 Modo Multi-Setpoint alterado imediatamente.

Se você estiver trabalhando no modo INCREMENTAL, você deve seguir os seguintes passos:

- Defina 6040h para 0x6F (do qual o bit 6 é usado para definir o modo incremental, o bit5 é usado para definir o modo de efeito imediato e os bits 3 a 0 são usados para habilitar o driver).
- 2. Defina 607Ah para o comando de posição.
- 3. Defina **6040**h para **0x7F** para acionar o comando de posição (o comando de posição é habilitado quando o valor de bit4 muda de 0 para 1).
- 4. O drive retorna bit12 (6041h) quando o bit4 muda de 0 para 1 (6040h) e a estação mestre exclui o valor de bit 4 (6040h) após receber 6041h para se preparar para transmitir o próximo comando de posição.

Se você estiver trabalhando no modo **ABSOLUTO**, você deve seguir os seguintes passos:

- 1. Defina **6040**h para **0x2F** (do qual o bit5 é usado para definir o modo de efeito imediato e os bits 3 a 0 são usados para habilitar o driver).
- 2. Defina 607Ah para o comando de posição.
- 3. Defina **6040**<sup>h</sup> para **0x3F** para acionar o comando de posição.
- 4. O drive retorna **bit12 (6041h)** quando o **bit4** muda de **0** para **1 (6040h)** e a estação mestre exclui o valor de **bit 4 (6040h)** após receber **6041h** para se preparar para transmitir o próximo comando de posição.
- 5. Se várias posições de destino serão transmitidas, repita o passo 2.

**OBS:** Os servos drives SV-DA200 suportam armazenamento em cache interno de 08 etapas de posições de destino.



#### 5.2 Modo Velocidade

No modo velocidade, o drive recebe um comando de velocidade de rotação transmitido pela estação mestre e planeja as velocidades internas de acordo com as configurações dos parâmetros de planejamento de aceleração.

#### 5.2.1 Procedimento de Operação (Velocidade)

- 1. Defina 6060h: Modo de Operação para 3 (Modo velocidade).
- 2. Defina 6083h para ajustar a aceleração (unidade: ms).
- 3. Defina **6084**h para ajustar a desaceleração (unidade: ms).
- 4. Defina **6040h: Control word** para habilitar o drive e acionar o motor.
- 5. Defina 60FFh: Target Velocity para definir a velocidade do motor (unidade: RPM).
- 6. Leia **6041**h: **Status Word** para ter o feedback de velocidade, posição, status do servo, entre outras informações.
- Leia 606Ch: Velocity Actual Value para obter o feedback da velocidade atual (unidade: RPM).

| Index | Nome                         | Тіро       | Atribuição |
|-------|------------------------------|------------|------------|
| 6040h | Control Word                 | UNSIGNED16 | RW         |
| 6041h | Status Word                  | UNSIGNED16 | RO         |
| 6060h | Modes of Operation           | INTEGER8   | RW         |
| 6061h | Modes of Operation Display   | INTEGER8   | RO         |
| 6069h | Velocity Sensor Actual Value | INTEGER32  | RO         |
| 606Bh | Velocity Demand Value        | INTEGER32  | RO         |
| 606Ch | Velocity Actual Value        | INTEGER32  | RO         |
| 606Dh | Velocity Window              | UNSIGNED16 | RW         |
| 606Fh | Velocity Threshold           | UNSIGNED16 | RW         |
| 6083h | Profile Acceleration         | UNSIGNED32 | RW         |
| 6084h | Profile Deceleration         | UNSIGNED32 | RW         |
| 60F8h | Max Slippage                 | INTEGER32  | RW         |
| 60FFh | Target Velocity              | INTEGER32  | RW         |

#### 5.2.2 Lista de Objetos relacionados para o Modo Velocidade

**Nota:** Na lista acima estão presentes os principais objetos para realizar a operação do modo posição. Caso a aplicação exija o controle de outras variáveis/objetos, consultar manual completo CANopen INVT, onde está presente a lista completa de objetos.



#### 5.2.3 Exemplo de Aplicação com Modo Velocidade

Ao usar o modo velocidade, você precisará realizar os seguintes passos:

- 1. Defina 6060h para 3 (modo velocidade).
- 2. Defina 6040h para 0x0F para habilitar o drive e 0x0 para desabilitar o drive.
- 3. Defina **60FFh** para **alterar a velocidade do motor.**
- 4. Defina **6083**h e **6084**h para modificar a aceleração e desaceleração do motor, respectivamente (em ms).

#### 5.3 Modo Torque

No modo torque, o drive recebe um comando de torque transmitido pela estação mestre e planeja os torques internos de acordo com as configurações dos parâmetros de planejamento do torque.

#### 5.3.1 Procedimento de Operação (Torque)

- 1. Defina 6060h: Modo de Operação para 4 (Modo torque).
- 2. Defina **6087h**: **Torque Slope** para ajustar a rampa de torque (unidade: ms). Indica o tempo que leva para aumentar o torque de 0 ~ 100% do torque nominal.
- 3. Defina 6040h: Control word para habilitar o drive e acionar o motor.
- 4. Defina 6071h: Target Torque para definir o torque do motor (unidade: 0,1%).
- 5. Leia **6041**h: **Status Word** para ter o feedback de velocidade, torque, status do servo, entre outras informações.

| Index | Nome                       | Тіро       | Atribuição |
|-------|----------------------------|------------|------------|
| 6040h | Control Word               | UNSIGNED16 | RW         |
| 6041h | Status Word                | UNSIGNED16 | RO         |
| 6060h | Modes of Operation         | INTEGER8   | RW         |
| 6061h | Modes of Operation Display | INTEGER8   | RO         |
| 6071h | Target Torque              | INTEGER16  | RO         |
| 6072h | Max Torque                 | UNSIGNED16 | RW         |
| 6073h | Max Current                | UNSIGNED16 | RO         |
| 6074h | Torque Demand Value        | INTEGER16  | RO         |
| 6075h | Motor Rated Current        | UNSIGNED32 | RO         |
| 6076h | Motor Rated Torque         | UNSIGNED32 | RO         |
| 6077h | Torque Actual Value        | INTEGER16  | RO         |

#### 5.3.2 Lista de Objetos relacionados para o Modo Torque



| 6078h | Current Actual Value    | INTEGER16  | RO |
|-------|-------------------------|------------|----|
| 6079h | DC Link Circuit Voltage | UNSIGNED32 | RO |
| 6087h | Torque Slope            | UNSIGNED32 | RW |

**Nota:** Na lista acima estão presentes os principais objetos para realizar a operação do modo posição. Caso a aplicação exija o controle de outras variáveis/objetos, consultar manual completo CANopen INVT, onde está presente a lista completa de objetos.

#### 5.3.3 Exemplo de Aplicação com Modo Torque

Ao usar o modo torque, você precisará realizar os seguintes passos:

- 1. Defina 6060h para 4 (modo torque).
- 2. Defina 6040h para 0x0F para habilitar o drive e 0x0 para desabilitar o drive.
- 3. Defina 6071h para alterar o torque do motor.
- 4. Defina **6087**h para alterar o Torque Slope.

#### 5.4 Modo Torque

No modo torque, o drive recebe um comando de torque transmitido pela estação mestre e planeja os torques internos de acordo com as configurações dos parâmetros de planejamento do torque.

#### 5.4.1 Procedimento de Operação (Torque)

- 1. Defina 6060h: Modo de Operação para 4 (Modo torque).
- Defina 6087h: Torque Slope para ajustar a rampa de torque (unidade: ms). Indica o tempo que leva para aumentar o torque de 0 ~ 100% do torque nominal.
- 3. Defina 6040h: Control word para habilitar o drive e acionar o motor.
- 4. Defina **6071**h: **Target Torque** para definir o torque do motor (unidade: 0,1%).
- 5. Leia **6041**h: **Status Word** para ter o feedback de velocidade, torque, status do servo, entre outras informações.

| Index | Nome         | Тіро       | Atribuição |
|-------|--------------|------------|------------|
| 6040h | Control Word | UNSIGNED16 | RW         |
| 6041h | Status Word  | UNSIGNED16 | RO         |

#### 5.4.2 Lista de Objetos relacionados para o Modo Torque



| 6060h | Modes of Operation         | INTEGER8   | RW |
|-------|----------------------------|------------|----|
| 6061h | Modes of Operation Display | INTEGER8   | RO |
| 6071h | Target Torque              | INTEGER16  | RO |
| 6072h | Max Torque                 | UNSIGNED16 | RW |
| 6073h | Max Current                | UNSIGNED16 | RO |
| 6074h | Torque Demand Value        | INTEGER16  | RO |
| 6075h | Motor Rated Current        | UNSIGNED32 | RO |
| 6076h | Motor Rated Torque         | UNSIGNED32 | RO |
| 6077h | Torque Actual Value        | INTEGER16  | RO |
| 6078h | Current Actual Value       | INTEGER16  | RO |
| 6079h | DC Link Circuit Voltage    | UNSIGNED32 | RO |
| 6087h | Torque Slope               | UNSIGNED32 | RW |

**Nota:** Na lista acima estão presentes os principais objetos para realizar a operação do modo posição. Caso a aplicação exija o controle de outras variáveis/objetos, consultar manual completo CANopen INVT, onde está presente a lista completa de objetos.

#### 5.4.3 Exemplo de Aplicação com Modo Torque

Ao usar o modo torque, você precisará realizar os seguintes passos:

- 1. Defina 6060h para 4 (modo torque).
- 2. Defina **6040**h para **0x0F para habilitar** o drive e **0x0 para desabilitar** o drive.
- 3. Defina **6071**h para alterar o torque do motor.
- 4. Defina **6087**h para alterar o Torque Slope.

# 6. CONFIGURAÇÃO DE SOFTWARE

Vamos utilizar três softwares para configuração da rede CANopen, sendo eles:

- Servo Plorer V4.18 (ou acima) → Configuração dos Servos Motores INVT;
- CANopen Builder V6.05 (ou acima) → Configuração da expansão DVPCOPM-SL;
- ISPSoft V3.10 (ou acima) → Configuração dos CLP's da linha DVP;





#### 6.1 Servo Plorer

Para a configuração do Servo Plorer V4.18 é necessário analisarmos os parâmetros que vamos alterar para trabalhar com a rede CAN. Esses parâmetros estão presentes no Capítulo 3 desse manual (veja 3.1).

- Parâmetro P0.03 = CANopen mode;
- Parâmetro P4.02 = 5000Kbps;
- Parâmetro P4.05 = Nó do servo na rede;



| ź | A Parameter Setting       |                  |        |             |            |          |    |         |         |        |     |       |     |              |           |                      |       |
|---|---------------------------|------------------|--------|-------------|------------|----------|----|---------|---------|--------|-----|-------|-----|--------------|-----------|----------------------|-------|
|   | i 🦊 📥 🕅   🛃   🖊 👒 🚔 💋   🔞 |                  |        |             |            |          |    |         |         |        |     |       |     |              |           |                      |       |
| F | 0                         | P1               | P2     | P3          | P4         | P5       | P6 |         | PtPO    | PtP1   | PtP | 2     | Dif | fferent para | meter Co  | mmon parameter       |       |
|   | Func                      | tion Code        | Param  | neter Name  | 2          |          |    |         | Current | Value  | *   | Unit  |     | Min          | Max       | Default              | ^     |
|   | P0.00                     | P0.00 Motor Type |        |             |            |          | 0  | 0       |         |        | -   |       | 0   | 9999999      | 236       |                      |       |
|   | P0.0                      | 1                | Encore | der type se | election   |          |    |         | unknowr | ı      |     | -     |     | 1            | 13        | 2500 line standard i | ni I. |
|   | P0.03                     | 2                | Motor  | Forward D   | irection   |          |    | $\odot$ | CCW     |        |     | -     |     | 0            | 1         | CCW                  |       |
|   | P0.03                     | 3                | Contro | ol Mode Se  | lection    |          |    |         | CANope  | n mode |     | -     |     | 0            | 9         | Position mode        | =     |
|   | P0.04                     | 4                | Intern | nal servo e | nbaling    |          |    | Q       | Disable |        |     | -     |     | 0            | 1         | Disable              |       |
|   | P0.0                      | 5                | Jog sp | beed        |            |          |    |         | 0       |        |     | r/min | 1   | 0            | 1000      | 200                  |       |
|   | P0.06                     | 6                | Numer  | rator of en | coder puls | e output |    | 0       | 0       |        |     | -     |     | 0            | 214748364 | 47 10000             |       |

| 4                       | Param | neter Set | ting | 9      |             |            |          |    |      |            |         |       |     |            |        |      |             | - 0    | x |
|-------------------------|-------|-----------|------|--------|-------------|------------|----------|----|------|------------|---------|-------|-----|------------|--------|------|-------------|--------|---|
| i 🦊 📥 🕅   🛃   🗰 📾 🤔   😰 |       |           |      |        |             |            |          |    |      |            |         |       |     |            |        |      |             |        |   |
| PO                      |       | P1        | P2   | 2      | P3          | P4         | P5       | P6 | PtPO |            | PtP1    | PtP2  | Dif | ferent par | ameter | Comm | on paramete | r      |   |
|                         | Funct | ion Code  |      | Parame | eter Name   |            |          |    |      |            | Current | Value | *   | Unit       | Min    |      | Max         | Defaul | ^ |
|                         | P4.01 |           |      | 485 Lo | cal commu   | nication a | ddress   |    |      | $\bigcirc$ | 0       |       |     | -          | 1      |      | 255         | 1      |   |
| I                       | P4.02 |           |      | Can ba | udrate se   | lection    |          |    |      | O          | 500K    |       |     | -          | 0      |      | 5           | 500K   |   |
|                         | P4.03 |           |      | Commu  | unication b | audrate se | election |    |      | 0          | 9600    |       |     | -          | 0      |      | 3           | 19200  | = |
|                         | P4.04 |           |      | Commu  | unication p | arity mode | 2        |    |      |            | N 8 1   |       |     | -          | 0      |      | 5           | N 8 1  |   |

| A  | Para                    | meter Sett | ing   |              |             |          |    |      |                         |          |       |     |            |        |      |             | - 0     | × |
|----|-------------------------|------------|-------|--------------|-------------|----------|----|------|-------------------------|----------|-------|-----|------------|--------|------|-------------|---------|---|
| ÷. | 🕹 📥 🔀   🛃   🗰 🛤 🚔 🥩   🛜 |            |       |              |             |          |    |      |                         |          |       |     |            |        |      |             |         |   |
| P  | 0                       | P1         | P2    | P3           | P4          | P5       | P6 | PtPO | I                       | PtP1     | PtP2  | Dif | ferent par | ameter | Comm | on paramete | r       |   |
|    | Fund                    | tion Code  | Paran | neter Name   | 2           |          |    |      |                         | Current  | /alue | *   | Unit       | Min    |      | Max         | Default | ^ |
|    | P4.0                    | 1          | 485 L | ocal commu   | inication a | ddress   |    |      | $\langle \rangle$       | 0        |       |     | -          | 1      |      | 255         | 1       |   |
|    | P4.0                    | 2          | Can b | audrate se   | lection     |          |    |      |                         | 1M       |       |     | -          | 0      |      | 5           | 500K    |   |
|    | P4.0                    | 3          | Comm  | nunication b | oaudrate s  | election |    |      | $\langle \cdot \rangle$ | 9600     |       |     | -          | 0      |      | 3           | 19200   | ≡ |
|    | P4.0                    | 4          | Comm  | nunication p | parity mode | 2        |    |      | 0                       | N 8 1    |       |     | -          | 0      |      | 5           | N 8 1   |   |
| I  | P4.0                    | 5          | Can L | ocal commu   | unication a | ddress   |    |      | C                       | 2        |       |     | -          | 1      |      | 127         | 1       |   |
|    | P4.0                    | 6          | 485 L | ocal commu   | inication a | ddress   |    |      | 4                       | Keep fau | lt    |     | -          | 0      |      | 1           | Auto d  |   |
|    | P4.0                    | 7          | Ether | CAT synchi   | ronisation  | period   |    |      | $\langle \rangle$       | 250us    |       |     | -          | 0      |      | 3           | 1ms     |   |

#### 6.2 CANopen Builder

O software CANopen Builder é responsável por reconhecer os servos na rede e entrelaçar os endereços do CLP e do servo. Para configurar esses endereços no CANopen Builder é necessário ter o arquivo EDS (Electronic Data Sheet) do servo motor. Esse arquivo é onde está configurado todo dicionário de PDO's, ou seja, nesse arquivo está presente todo o endereçamento de memórias presentes no servo motor. No CANopen Builder podemos realizar o upload desse



arquivo e trabalhar apenas com os endereços do CLP que estarão entrelaçados com esse mapa EDS.

Segue abaixo o passo a passo do CANopen Builder para:

- Reconhecimento dos servos na rede;
- Upload do mapa EDS;
- Configuração do entrelaçamento de endereços;

#### 6.2.1 Upload do Mapa EDS no Software

| Please select a project type                                     |                                                                                              | x |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
| Project Type                                                     |                                                                                              |   |
| DVP 15MC Series<br>DVP 50MC Series<br>AS500 Series<br>O DVP 10MC | The software can be used for<br>CANopen network configuration<br>of DVPCOPM-SL and DVPES2-C. |   |
| CANopen Configuration                                            |                                                                                              | ] |
| OK                                                               | Cancel                                                                                       |   |



| n Delta CANopen Builder - Mapa EDS - Modo Posição INVT |                         |                  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|-------------------------|------------------|--|--|--|--|--|--|--|--|--|--|
| File Edit View Network CNC CAM Tools                   | Setup Help              |                  |  |  |  |  |  |  |  |  |  |  |
| D ☞ 🖩 🗃 🗶 🖿 🖿 🗖 🗖                                      | Communication Setting > | ✓ System Channel |  |  |  |  |  |  |  |  |  |  |
|                                                        | Libraries Language >    | Ethernet Channel |  |  |  |  |  |  |  |  |  |  |
| ×                                                      | Language Setting >      |                  |  |  |  |  |  |  |  |  |  |  |

| Serial Port Setti | ing D          | C |
|-------------------|----------------|---|
| Interface: Via    | a PLC Port 🗸 🗸 |   |
| COM Port:         | COM2 ~ -       | _ |
| Address:          | 1              |   |
| Baud rate:        | 9600 🗸         |   |
| Data bits:        | 7 👻            |   |
| Parity:           | Even Parity 🗸  |   |
| Stop bits:        | 1 ~            |   |
| Mode:             | ASCII 🗸        |   |
| Delay time:       | 0 ms           |   |
| OK                | Cancel         |   |

Abrir gerenciador de dispositivos e verificar qual porta de comunicação está sendo utilizada. Pode ser utilizado o COMMGR também para identificação da porta

| <b>杰</b> (   | elta CANopen              | Builder - N     | 1apa EDS     | S - Mod      | lo Posiç      | ão INVT                    |                       |
|--------------|---------------------------|-----------------|--------------|--------------|---------------|----------------------------|-----------------------|
| <u>F</u> ile | <u>E</u> dit <u>V</u> iew | <u>N</u> etwork | <u>C</u> NC  | C <u>A</u> M | <u>T</u> ools | <u>S</u> etup <u>H</u> elp | Clique em Tools > EDS |
|              | 🖻 🗏 🛣                     | X 🖬 🖬           | $  \times  $ | 8            | S             | end SDO Request            | Operation             |
| Θ            | • • •                     |                 |              | ≣! ►         | E             | DS Operation               |                       |
|              |                           |                 |              | ×            | 0             | eivce Read/Write           |                       |



| EDS Operation    |                                                                                                                                                                                                                                                                                | x  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| EDS<br>Operation | Select an operation to continue.                                                                                                                                                                                                                                               |    |
| Operation        | <ul> <li>Install EDS file<br/>This operation will add a new device to our device</li> <li>Uninstall EDS file<br/>This operation will remove a device from our device list.</li> <li>Change a device's icon<br/>This operation will alter the icon associated with a</li> </ul> |    |
|                  | Avançar > Cancel                                                                                                                                                                                                                                                               | ar |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 着 Abrir                                                         | x                                                                                                                                                           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Select EDS file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Examinar:                                                       | 📙 Mapa EDS - INVT 🗸 🎯 🎓 📰 🗸                                                                                                                                 |      |
| Select EDS file for new device.  I hatal a EDS file I instal al EDS file | Acesso rápido<br>Bibliotecas<br>Este<br>Computador              | Nome Data de modificação Tipo<br>000001DD0402019200006000200001 07/11/2019 02:55 Arquivo EDS<br>Selecione o arquivo EDS<br>disponibilizado pelo fabricante. |      |
| V-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rede                                                            | < III >                                                                                                                                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acesso rápido Browse Browse Concelar Content Avançar > Cancelar | Nome: INVT_DA200_CANopen_V2.60  V Abrir                                                                                                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Tipo: EDS File(*.eds)  Cancelar                                                                                                                             |      |
| < Voltar Avançar > Cancelar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | Abrir como somente leitura                                                                                                                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                             | N.Y. |



| Select icon file |           |          |           |           |   |        |      |       |         | x  |
|------------------|-----------|----------|-----------|-----------|---|--------|------|-------|---------|----|
| EDS<br>Operation | Select ar | icon fil | e for new | v device. |   |        |      |       |         |    |
| v.e              |           |          |           |           |   |        |      | [     | Browse. |    |
|                  |           |          |           |           | < | Voltar | Avan | çar > | Cancela | ar |

| EDS wizard finish |                                         | x |
|-------------------|-----------------------------------------|---|
| EDS<br>Operation  | Confirm the new device information.     |   |
| -                 | This device will be add to device list: |   |
|                   | Vender Name: Delta Electronics,INC.     |   |
|                   | Product ASDA-A2 Drive                   |   |
|                   | Icon:                                   |   |
|                   | < Voltar Concluir Cancelar              |   |



#### 6.2.2. Configuração do Mapa EDS (PDO's)

Segue abaixo o procedimento para reconhecimento do servo na rede CANopen através do CANopen Builder.

| Builder - N | /lapa ED                                     | S - Mod                                                                            | lo Posiç                                                                                           | ão II                                                                                                                                                                                   |
|-------------|----------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network     | CNC                                          | CAM                                                                                | Tools                                                                                              | Set                                                                                                                                                                                     |
| Mas         | ter para                                     | meter                                                                              |                                                                                                    |                                                                                                                                                                                         |
| Nod         | e list                                       |                                                                                    |                                                                                                    |                                                                                                                                                                                         |
| Onli        | ne                                           |                                                                                    | F10                                                                                                |                                                                                                                                                                                         |
| Dow         | nload                                        |                                                                                    |                                                                                                    |                                                                                                                                                                                         |
|             |                                              |                                                                                    |                                                                                                    |                                                                                                                                                                                         |
|             | Builder - N<br>Network<br>Mas<br>Nod<br>Onli | Builder - Mapa ED<br>Network CNC<br>Master para<br>Node list<br>Online<br>Download | Builder - Mapa EDS - Mod<br>Network CNC CAM<br>Master parameter<br>Node list<br>Online<br>Download | Builder - Mapa EDS - Modo Posiçi         Network       CNC       CAM       Tools         Master parameter       Node list       F10         Online       F10         Download       F10 |

Caso os servos já estejam configurados e parametrizados para o modo CANopen, você consegue reconhece-los diretamente no CANopen Builder.

Basta ir em Network > Online e esperar ele achar todos os nós da rede. Com isso, o próprio software já montará a estrutura, conforme imagem ao lado.









|                             | ×                      |       |                      |       |             |             |               | PDO Mapp  | ing        |          |                                  |      |   |
|-----------------------------|------------------------|-------|----------------------|-------|-------------|-------------|---------------|-----------|------------|----------|----------------------------------|------|---|
| le Configura                | ation                  |       |                      |       |             |             | x             | Index : 1 | 600h       | ]        | Name : RxPDO 1                   |      |   |
| ode-Id: 2                   |                        | N     | Vame:                | DA300 | Drive       |             |               | Availab   | le Objects | from EDS | file                             |      | _ |
| Node Infom                  | nation(H               | ex)   |                      |       |             |             |               | Index     | Sub-idx    | R/W      | Object Name                      |      | - |
| Vendor                      | Id:                    | 000   | 00003                |       |             | Error Contr | ol Protocol   | 2000      | 0          | RW       | P0.00_µç»úÐͰÅ                    |      |   |
| Device                      | T                      | 0.00  | 20200                |       | 4           | Auto SDO C  | onfiguration  | 2001      | 0          | RW       | P0.01_±àÂëÆ÷ÀàÐÍ                 |      |   |
| Device                      | Type.                  | 040   | J20200               |       |             |             |               | 2003      | 0          | RW       | P0.03_¿ØÖÆÄ£Ê½Ñ¡Ôñ               |      |   |
| <ul> <li>Produce</li> </ul> | t Code:                | 000   | 000010               |       | Emerg       | ency COB-I  | D: 82         | 2004      | 0          | RW       | P0.04_Ë·þʹÄÜ                     |      |   |
| ✓ Revisio                   | on:                    | 000   | 000074               |       | Nodeg       | uard COB-I  | D: 702        | 2005      | 0          | RW       | P0.05_µã¶ĒÙ¶È                    |      |   |
| DO 6                        | DC 61-                 |       |                      |       |             |             |               | 2006      | 0          | RW       | P0.06_·Ö.ƵÊä³öϵÊý·Ö>             | Ó    |   |
| PDO from El                 | DS file                |       |                      |       |             |             | Conv EDS file | 2007      | 0          | RW       | P0.07_·ÖƵÊä³öĬµÊý·ÖA             | Ä,   |   |
| Index Pl                    | DO Nam                 | e     |                      | Type  | Inhibit     | Event ^     | copy 220 me   | 2008      | 0          | RW       | P0.08_·ÖƵÊä³öÈ;·´                |      |   |
| 1403 R                      | eceive P               | DOC   | ommunic              | 254   | -           | -           |               | 2009      | 0          | RW       | P0.09 × <sup>a</sup> ¾ØĨÞÖÆ·½Ê½É | è¶   |   |
| 1800 In<br>1801 Tr          | ransmit I<br>ransmit I | PDO C | Communi.<br>Communi. | 254   | 1           | 0 =         | Add           | >         |            | ₩        | 1                                |      |   |
| 1802 Tr                     | ransmit I              | PDO C | Communi              | 254   | 1           | 0 ~         | Delete        | Mappe     | a Objects  | _        |                                  |      | _ |
| <                           |                        |       | ш                    |       |             | >           | Define PDO    | Index     | Sub-idx    | Object   | Name                             | Туре |   |
| Configured                  | PDO                    |       |                      |       |             |             | DDO Maria     | 6040      | 0          | Contro   | lword                            |      |   |
| Index CO                    | B-ID                   | R/T   | Len                  | Type  | Description | n           | PDO Mapping   |           |            |          |                                  |      | _ |
| 1400 202                    | 2                      | Rx    | 2                    | 254   | RxPDO 1     |             | Properties    |           |            |          |                                  |      |   |
| 1800 182                    | 2                      | Tx    | 7                    | 254   | TxPDO 1     |             |               |           |            |          |                                  |      |   |
|                             |                        |       |                      |       |             |             | OK            |           |            |          |                                  |      |   |
| <                           |                        |       | ш                    |       |             | >           | Cancel        |           |            | OK       | Cancel                           |      |   |

Depois de configurar a PDO, clique 2x no Index e selecione qual parâmetro você quer ler ou escrever em PDO Mapping. Clique na seta para baixo para mover o endereço a ser lido/escrito e depois clique em Ok.

Faça isso para todos os endereços que você quer ler/escrever e crie seu próprio mapa de memórias para comunicação.

| <u>□</u> <u>□</u> <u>○</u> <u>○</u> <u>○</u> <u>○</u> <u>○</u> <u>○</u> <u>○</u> <u>○</u> <u></u> <u></u> <u></u> <u></u> <u></u> | Node List Setting   |                             | x |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|---|
|                                                                                                                                   | Available Nodes:    | Node List:                  |   |
|                                                                                                                                   | Node-ID Node Name   | Node-ID Node Name           |   |
| DVPCOPM Master                                                                                                                    | 002 DA300 Drive     |                             |   |
|                                                                                                                                   |                     |                             |   |
| 002                                                                                                                               |                     |                             |   |
| Clique 2x no DVPCOPM pa                                                                                                           | ra                  |                             |   |
| enviar o mapa PDO criado<br>para o CLP.                                                                                           | Output Table        | Input Table                 |   |
|                                                                                                                                   | Device Device Image | Device Device Image         | ^ |
| DA300 Selecione o DA300 e clique                                                                                                  | D6282_L             | D6032_L                     |   |
| Drive na seta para direita.                                                                                                       | D6282_H             | D6032_H                     |   |
|                                                                                                                                   | D6283_L             | D6033_L                     |   |
|                                                                                                                                   | D6283_H             | D6033_H                     |   |
|                                                                                                                                   | D6284_L             | D6034_L                     |   |
|                                                                                                                                   | D6284_H             | D6034_H                     |   |
|                                                                                                                                   | D6285_L             | D6035_L                     |   |
|                                                                                                                                   | D6285_H             | D6035_H                     |   |
|                                                                                                                                   | D6286_L             | D6036_L                     |   |
|                                                                                                                                   | D6286_H             | D6036_H                     |   |
|                                                                                                                                   | D6287_L             | D6037_L                     |   |
|                                                                                                                                   | D6287_H             | D6037_H                     |   |
|                                                                                                                                   | D6288_L             | D6038_L                     |   |
|                                                                                                                                   | D6288_H             | V D6038_H                   | ~ |
| ode Description                                                                                                                   |                     | Manual allocation OK Cancel |   |



| List Settin<br>Available N    | g<br>Vođes:                                                  |     |   | Node List   | :                         |   |
|-------------------------------|--------------------------------------------------------------|-----|---|-------------|---------------------------|---|
| Node-ID                       | Node Name                                                    | Т   |   | Node-ID     | Node Name                 |   |
|                               |                                                              |     | > | 002         | DA300 Drive               |   |
|                               |                                                              |     |   | Ī           |                           |   |
|                               |                                                              |     | < | ]           |                           |   |
|                               |                                                              |     |   |             |                           |   |
| Output Tab                    | le                                                           | -   | H | Input Table | 8                         |   |
| Device                        | Device Image                                                 | ^   |   | Device      | Device Image              | ^ |
| D6282_L                       | [002]RxPDO-Controlword                                       |     |   | D6032_L     | [002]TxPDO-Statusword     |   |
| D6282_H                       | [002]RxPDO-Controlword                                       |     |   | D6032_H     | [002]TxPDO-Statusword     |   |
| D6283 L                       | [002]RxPDO-Target Position                                   |     |   | D6033 L     | [002]TxPDO-R0.00 μç»ú×*ËÙ |   |
| D6283 H                       | [002]RxPDO-Target Position                                   |     |   | D6033 H     | [002]TxPDO-R0.00 µç»úתËÙ  |   |
| D6284_L                       | [002]RxPDO-Target Position                                   |     |   | D6034_L     | [002]TxPDO-R0.00_µç»úתËÙ  |   |
| D6284 H                       | [002]RxPDO-Target Position                                   |     |   | D6034 H     | [002]TxPDO-R0.00 μc»ú×*ËÙ |   |
| D6285 L                       | [002]RxPDO-Profile velocity                                  |     |   | D6035 L     |                           |   |
| D6285 H                       | [002]RxPDO-Profile velocity                                  |     |   | D6035 H     |                           |   |
| D6286 L                       | [002]RxPDO-Profile velocity                                  |     |   | D6036 L     |                           |   |
| D6286 H                       | [002]RxPDO-Profile velocity                                  |     |   | D6036 H     |                           |   |
|                               | [002]RxPDO-Position factor N                                 |     |   | D6037 L     |                           |   |
| D6287 L                       |                                                              |     |   | D6037 H     |                           |   |
| D6287_L<br>D6287 H            | 1002 RxPDO-Position factor N                                 | ( I |   | D6028 I     |                           |   |
| D6287_L<br>D6287_H<br>D6288 L | [002]RxPDO-Position_factor_N<br>[002]RxPDO-Position factor N |     |   | D0000 L     |                           |   |

Feito o procedimento acima, podemos visualizar todo o nosso mapa criado. Em Output Table são os endereços em que vamos escrever no servo e Input Table são os endereços que vamos ler do servo.

Observamos que esses endereços já vêm configurados com os registros "D" do CLP. Ou seja, os registradores do CLP já estão atrelados aos endereços do servo. Por isso devemos respeitar esse endereçamento.

Outro ponto importante é a divisão dos registros. Podemos observar que temos Dxxx\_L e Dxxx\_H, ou seja, Low word e High Word. Nunca devemos colocar um endereço sobreposto a outro. Exemplo

D6282\_L - Control Word D6282\_H - Target Position

Observamos que há dois endereços diferentes do servo dentro de um mesmo registro do CLP. Isso ocasionará conflito e não conseguiremos comunicar de maneira correta. Para reparar esse erro, devemos realocar as memórias do mapa PDO descrito nos passos anteriores.



Após configurado o mapa PDO, podemos realizar o download para a expansão clicando em Network > Online > Download

#### 6.3 ISPSoft

O ISPSoft V3.10 (ou acima) tem por objetivo criar a lógica de programação para trabalhar com o servo motor. Nesse software que vamos ler/escrever dados do servo e realizar o controle de variáveis e intertravamento. Como mostrado no capítulo anterior (ver 6.2), já temos todos os endereços configurados e atrelados a variáveis do servo. Agora só temos que implementar esses endereços no próprio ISPSoft.

É necessário a criação de um "Monitor Table" para facilitar a visualização e acionamento dos registradores, conforme exemplo abaixo:



| 🌍 CANopen_INVT_ModoV                              | elocid | ade(1) - Delta ISPSoft - [Monito                       | r Table]          |           |                |                |                |                                        |
|---------------------------------------------------|--------|--------------------------------------------------------|-------------------|-----------|----------------|----------------|----------------|----------------------------------------|
| 🖳 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> | ompil  | e <u>P</u> LC <u>T</u> ools W <u>i</u> zard <u>W</u> i | ndow <u>H</u> elp |           |                |                |                |                                        |
| i 🖹 🚅 🖩 🎒 🔲 🗖                                     |        | i 🜔 🖨 💀 🔜 🔛 i                                          | 🖉 🔮 🏢 🛡 🖳         | P 🔮 🔜 👎 🐻 | 🕒 10 ≑ 🖨 😌 🞝   |                | Ξ. 🛽 🖾         | መ መ                                    |
| i 💿 💿 i X. 🗈 🛍 🥏                                  | Q      | ₽ <b>b</b>                                             | -                 |           |                |                |                |                                        |
| Project 🎵                                         | ×      | Device Name                                            | Status            | Data Type | Value (16bits) | Value (32bits) | Radix          | Comment                                |
| NWCONFIG                                          | •      | D6032                                                  |                   |           |                |                | Binary         | <ul> <li>Status Word</li> </ul>        |
| Project [C:\Gustav                                | ٥١     | D6033                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Leitura RPM</li> </ul>        |
| 🔤 📝 Device Com                                    | ne     | D6034                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Leitura RPM</li> </ul>        |
| 🚯 Used Device                                     | R      | D6035                                                  |                   |           |                |                | Signed Decimal | •                                      |
| <u>∔</u> <u>₩</u> SV2                             |        | D6036                                                  |                   |           |                |                | Signed Decimal | •                                      |
| i Tasks                                           |        | D6282                                                  |                   |           |                |                | Binary         | <ul> <li>Control Word</li> </ul>       |
| Giobal Symb                                       | 01     | D6283                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Target Velocity</li> </ul>    |
|                                                   |        | D6284                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Target Velocity</li> </ul>    |
| Main [P]                                          | 20     | D6285                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Aceleração (ms)</li> </ul>    |
| Function Blo                                      | ck l   | D6286                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Desaceleração (ms)</li> </ul> |
| 🖃 📴 Device Monit                                  | or     | D6287                                                  |                   |           |                |                | Signed Decimal | <ul> <li>Modo de Operação</li> </ul>   |
| 🛄 Monitor                                         | Ta     |                                                        |                   |           |                |                |                |                                        |
| 🗄 🎹 APIs                                          |        |                                                        |                   |           |                |                |                |                                        |

Os endereços acima (D – registradores) foram retirados do mapa PDO criado no software CANopen Builder. Para exemplificar, segue abaixo um mapa PDO criado (modo velocidade) para comparação:

| List Settin<br>Available N | g<br>Nođes:                   |   |    | Node List   | :                        |   |
|----------------------------|-------------------------------|---|----|-------------|--------------------------|---|
| Node-ID                    | Node Name                     | Т |    | Node-ID     | Node Name                |   |
|                            |                               |   | >  | 002         | DA300 Drive              |   |
|                            |                               |   | 1  | 1           |                          |   |
|                            |                               |   | <  |             |                          |   |
|                            |                               |   |    |             |                          |   |
| Dutput Tab                 | le                            |   | lſ | Input Table | )                        |   |
| Device                     | Device Image                  | ^ | Ш  | Device      | Device Image             | ^ |
| D6282_L                    | [002]RxPDO-Controlword        |   | ш  | D6032_L     | [002]TxPDO-Statusword    |   |
| D6282_H                    | [002]RxPDO-Controlword        |   | Ш  | D6032_H     | [002]TxPDO-Statusword    |   |
| D6283_L                    | [002]RxPDO-Target_velocity    |   | Ш  | D6033_L     | [002]TxPDO-R0.00_µç»úתËÙ |   |
| D6283_H                    | [002]RxPDO-Target_velocity    |   | Ш  | D6033_H     | [002]TxPDO-R0.00_µç»úתËÙ |   |
| D6284_L                    | [002]RxPDO-Target_velocity    |   | Ш  | D6034_L     | [002]TxPDO-R0.00_µç»úתËÙ |   |
| D6284 H                    | [002]RxPDO-Target_velocity    |   | Ш  | D6034_H     | [002]TxPDO-R0.00_µç»úתËÙ |   |
| D6285_L                    | [002]RxPDO-vl_velocity_accele |   | Ш  | D6035_L     |                          |   |
| D6285_H                    | [002]RxPDO-vl_velocity_accele |   | Ш  | D6035_H     |                          |   |
| D6286 L                    | [002]RxPDO-vl velocity decele |   | Ш  | D6036 L     |                          |   |
| D6286 H                    | [002]RxPDO-v1 velocity decel  |   | Ш  | D6036 H     |                          |   |
| D6287 L                    | [002]RxPDO-Modes of operatic  |   | Ш  | D6037 L     |                          |   |
| D6287_H                    |                               |   |    | D6037_H     |                          |   |
| D6288 L                    |                               |   | Ш  | D6038 L     |                          |   |
| D6288 H                    |                               | ~ | Ш  | D6038 H     |                          | ÷ |
| _                          |                               | * | 11 |             |                          | Ľ |



Com isso, já identificamos todos os endereços. Basta criar a lógica de programação, realizar o download para o CLP e manusear as Words de acordo com cada modo de operação do servo.

**OBS:** Lembrando que o passo a passo para os modos de operação do servo está presente no capítulo 5 desse documento.

# 7. FLUXOGRAMA





# 8. CONSIDERAÇÕES FINAIS

Com a introdução sobre o conceito da rede CAN, conseguimos entender um pouco mais sobre a aplicação e o funcionamento desse protocolo. Para ter um bom desenvolvimento é necessário um conhecimento básico no protocolo CANopen, porém vimos que não é difícil a comunicação.

Outra vantagem excelente dessa expansão MA-8X8YT é que conseguimos agrega-la com qualquer outro fabricante de CLP, seja Delta, Siemens, Rockwell, Schneider, entre outros, desde que o CLP possua o protocolo CANopen.

Qualquer dúvida pertinente entre em contato com o time técnico da Kalatec para solucioná-las. Para terem acesso a programação usada nesse documento, vídeo-aulas e manuais, entre em contato conosco também que fornecemos essa documentação. Abaixo segue os contatos em relação a cada região:

#### <u>Matriz Campinas – SP</u>

Segunda à Quinta das 07h40 às 17h30 Sexta das 08h00 às 17h00 Telefone: (19) 3045-4900 Atende Brasil inteiro e Interior de São Paulo.

#### Filial São Paulo – SP

Segunda à Quinta das 07h40 às 17h30 Sexta das 08h00 às 17h00 Telefone: (11) 5514-7680 Atende Grande São Paulo e São Paulo Capital.

#### Filial Joinville – SC

Segunda à Quinta das 07h40 às 17h30 Sexta das 08h00 às 17h00 Telefone: (47) 3425-0042 Atende a Região Sul do Brasil.

#### SITE KALATEC AUTOMAÇÃO

