Manual do Usuário do Driver de Passo de Malha Fechada

TOTALMENTE ISOLADO RS485 STR6-RS485 REV. 1.0

SUMÁRIO

<u>Prefácio</u>	03
<u>Visão Geral</u>	04
Introdução do produto	04
Característica do Produto	04
Campo de aplicação	04
Índices de Desempenho	05
Características Elétricas	05
Ambiente de Serviço	05
Instalação	06
Dimensão de Instalação	
Método de Instalação	06
Portas e Fiação do Driver	07
Diagrama de Fiação	07
Definição de Portas	07
Instruções de Configuração da Chave DIP	11
Descrição da Comunicação e Protocolos e Comunicação	12
Layout da Rede	12
Protocolo de Comunicação	12
<u>Função de Retorno a Zero</u>	18
Código de Função Comum MODBUS	
Rotina de Verificação CRC	20

Prefácio

Obrigado por utilizar nosso produto Driver de Passo de Malha Fechada com Barramento Totalmente Isolado RS485. Antes de usar este produto, leia este manual cuidadosamente para obter as informações de segurança necessárias, precauções e métodos de operação. A operação incorreta pode ter consequências muito sérias.

⚠ Atenção: Este produto não foi projetado e fabricado para proteger a segurança pessoal contra a ameaça do sistema mecânico. Considere medidas de proteção de segurança durante o projeto e fabricação do sistema mecânico para prevenir acidentes causados por operação imprópria ou produto anormal.

- O conteúdo deste manual está sujeito a alterações sem aviso prévio devido a melhorias no produto.
- Nossa empresa não assumirá qualquer responsabilidade por qualquer modificação do produto pelo usuário.
- Ao ler, preste atenção às seguintes indicações no manual:

Nota: Lembra você dos pontos-chave no texto.

Cuidado: Indica que a operação errada pode causar lesões pessoais e danos ao equipamento.

Alguns de nossos produtos passaram pela certificação compulsória nacional 3C, certificação CE e certificação ROHS.

Visão Geral

Introdução do Produto

O STR6-RS485 é o Driver de Passo de Malha Fechada com barramento totalmente isolado RS485 padrão Model Bus de nossa empresa. Ele adota a mais recente tecnologia de processamento digital DSP de 32 bits. O algoritmo de controle do driver emprega tecnologia avançada de corrente variável e tecnologia avançada de conversão de frequência. O driver apresenta baixo aquecimento, pequena vibração do motor e operação estável.

Os usuários podem definir qualquer endereço ID entre 1 e 255 e qualquer valor de corrente dentro da corrente nominal, o que pode atender aos requisitos de aplicação da maioria das ocasiões. O driver de barramento pode acionar motor de passo de malha aberta de duas fases, motor de passo de malha aberta de três fases, motor de passo de malha fechada, motor servo sem escovas DC, etc. Graças à tecnologia de micros seccionamento embutida, mesmo sob a condição de baixa subdivisão, o efeito de alta subdivisão pode ser alcançado.

A operação em baixa, média e alta velocidade é muito estável e o ruído é muito pequeno. O driver é integrado com a função de configuração automática de parâmetros ao ligar, que pode gerar automaticamente os parâmetros operacionais ideais para diferentes motores e maximizar o desempenho do motor.

Características

- Nova tecnologia DSP de 32 bits.
- Adotado o esquema de circuito de interface de isolamento elétrico total do sinal de comunicação RS485, com comunicação estável e confiável.
- Entrada de sinal de isolamento fotoelétrico de canal, sendo 2 delas isolamento por optoacoplador de alta velocidade.
- Saída OC isolada por opto acoplador de canal.
- Função de correspondência automática de motor com parâmetro ao ligar.
- O controle de corrente variável reduz muito o aquecimento do motor.
- Aciona uma variedade de motores de passo de malha fechada, séries 20, 28, 42, 57, 60, 86.
- Frequência de comunicação de até 1MHz (padrão de fábrica: 9600Hz).
- Configuração de corrente conveniente, opcional entre 0.3-7.8A.
- O intervalo de encoder permitido é de 250-10000 linhas, e o número de linhas do encoder recebido por padrão de fábrica é de 1000 linhas.
- Funções de proteção contra sobretensão, subtensão, sobrecorrente, perda de fase, dano no fio do motor, erro ou danos no fio do encoder, etc.

Campo de Aplicação

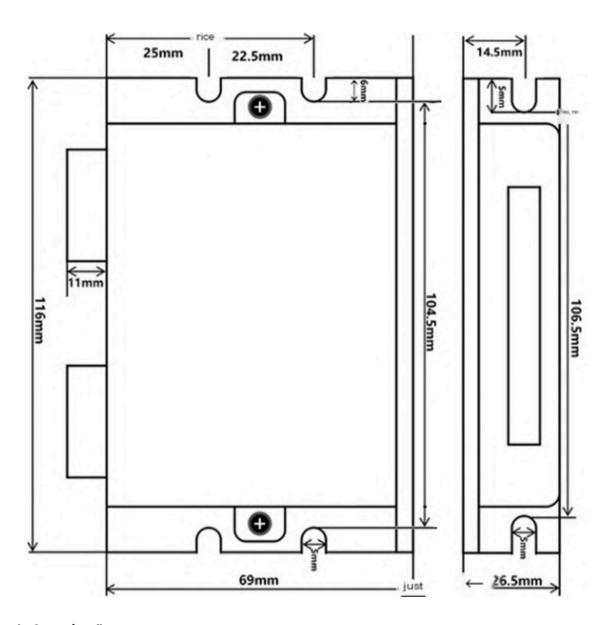
É adequado para diversos equipamentos e instrumentos automáticos de pequeno e médio porte, como AGV, porta de passagem rápida, máquina de gravação, máquina de marcação, máquina de corte, fotocomposição a laser, plotter, máquina-ferramenta de controle numérico, equipamento de montagem automática, etc. Efeito de aplicação excelente em equipamentos com baixo ruído e alta velocidade esperados pelos usuários.

Índices de Desempenho

Características Elétricas

Parâmetro	STR6-RS485				
Farametro	Valor Mínimo	Valor Típico	Valor Máximo	Unidade	
Corrente de Saída (valor de pico)	0.5	-	78	А	
Tensão de Alimentação de Entrada (DC)	24	24/36/48	75	VDC	
Corrente de Entrada do Sinal de Controle	6	10	16	МА	
Nível da Interface do Sinal de Controle	5	5	24	Vdc	
Tensão de Pull-up da Saída OC	5	-	24	Vdc	
Frequência de Comunicação RS485	1		1000	KHz	
Entrada de Tensão Analógica	0		5	Vdc	
Resistência de Isolamento	100			МΩ	

Ambiente de Serviço


Parâmetro		Detalhes
Modo de I	Resfriamento	Resfriamento natural ou resfriamento a ar forçado
Ambiente de	Ocasião	Não deve ser colocado perto de outros equipamentos aquecidos. Deve-se evitar poeira, névoa de óleo, gás corrosivo, locais com alta umidade e forte vibração. Gás combustível e poeira condutiva são proibidos.
Serviço	Temperatura	-5°C~+50 °C
	Umidade	RH~90%
	Vibração	M/s2 MAX
Temperatura d	e Armazenamento	-10°C~60 °C
Altitude de Uso		Abaixo de 1000m
Peso		0.2KG

Instalação

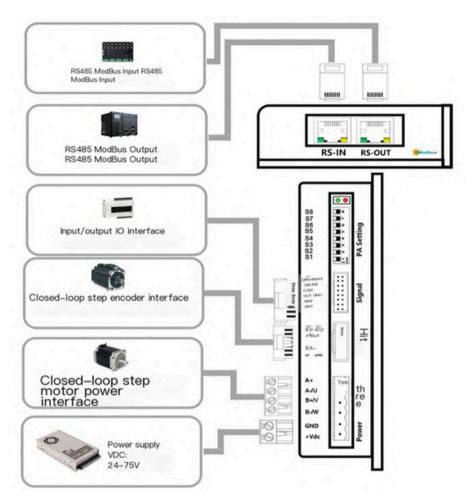
Dimensão de Instalação

Método de Instalação

A temperatura operacional confiável do drive é geralmente de até 65°C, e a temperatura operacional do motor é de até 80°C.

É recomendado selecionar o modo de meia-corrente automática quando o motor estiver parado, e a corrente é automaticamente reduzida pela metade para diminuir o aquecimento do motor e do driver.

Ao instalar o driver, instale-o verticalmente na lateral, de modo que os dentes de resfriamento formem uma forte convecção de ar.


Se necessário, instale um ventilador próximo ao driver para dissipação de calor forçada, garantindo que o driver opere dentro da faixa de temperatura operacional confiável.

Portas e Fiação do Driver

Diagrama de Fiação

Definição de Portas

Indicação de Status do LED

O **LED azul** à esquerda é o indicador de energia, que fica normalmente aceso quando o driver está ligado. Ele se apaga quando o drive é desenergizado.

O **LED azul** é o indicador de falha. Quando ocorre uma falha, o indicador pisca em um ciclo de 3 segundos. Quando a falha é eliminada pelo usuário, o **LED azul** fica normalmente apagado.

O número de flashes do **LED vermelho** em 3 segundos representa diferentes informações de falha:

S/N	Número de Flashes	Forma de onda intermitente do LED vermelho	Descrição da Falha
1	1		Falha de sobrecorrente ou curto- circuito fase-a-fase
2	2		Falha de sobretensão
3	3		Falha de subtensão
4	4		Proteção contra perda de fase
5	7		Alarme de tolerância excedida, falha do encoder, falha do motor

Porta de Entrada do Sinal de Controle (Interface do Sinal de Controle)

Nome					
PL+	Sinal de alta velocidade: a borda de subida do pulso é eficaz. PL em nível alto 5~24Vdc e 0~0.5V em nível baixo. A largura do pulso deve ser maior que 1.5 µS para responder de				
PL -	forma confiável ao sinal de pulso.				
DR+	Sinal de alta velocidade: a borda de subida do pulso é eficaz. DR em nível alto $5\sim24$ Vdc $0\sim0.5$ V em nível baixo. A largura do pulso deve ser maior que 1.5 μ S para responder de				
DR-	forma confiável ao sinal de pulso.				
IN+	Sinal de baixa velocidade: entrada de ânodo comum de in1, in2 e in3, nível compatível com 5-24V				
IN1	Entrada negativa do sinal de baixa velocidade IN1, limite negativo				
IN2	Entrada negativa do sinal de baixa velocidade IN2, limite positivo				
IN3	Entrada negativa do sinal de baixa velocidade IN3, reservado				
OT: OT-	Saída emissora OC de cátodo comum, terminal comum de saída OC do emissor OT1, C				
ОТ1	Saída emissora OT1, tensão máxima de pull-up 24Vdc, resistência de pull-up 2K Ω, corrente máxima de saída 100mA, saída de falha				
OT2	Saída emissora OT2, tensão máxima de pull-up 24Vdc, resistência de pull-up 2K Ω, corrente máxima de saída 100mA, saída no lugar (in-place output)				
10V	Reservado para uso				
A2	Reservado para uso				
GND	Reservado para uso				
AIN	Reservado para uso				
5V	Reservado para uso				

Interface de Sinal do Encoder e Sinal Hall

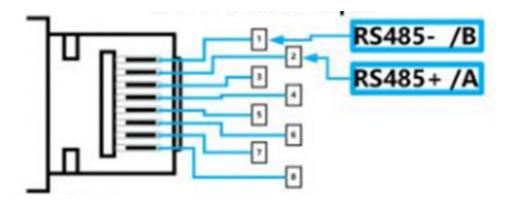
Nome	Função						
EA+	Interface de entrada diferencial do sinal A do Encoder						
EA-	menass as entrada directicidi de sindi // de Enesdei						
EB+	Interface de entrada diferencial do sinal B do Encoder						
EB-	interrace de entrada direfericiar do sinar 6 do Encoder						
EZ+	Interface de entrada diferencial do sinal Z do Encoder						
EZ-	interrace de entrada direfericiar do sinar 2 do Encoder						
EU+							
EU-	Reservado para interface de sinal Hall do motor servo sem escovas						
EV+	Posonyado para interface de sinal Hall de meter senve sem escayas						
EV-	Reservado para interface de sinal Hall do motor servo sem escovas						
EW+	Decembed a gradint or free de ainsel Hall de meter com la companya						
EW-	Reservado para interface de sinal Hall do motor servo sem escovas						
5V	Fornece ao encoder e ao elemento Hall do motor uma tensão DC de 5V e uma corrente de 100mA						
GND	Cátodo do terminal de referência V						

Porta de Saída de Motor e Fonte de Alimentação Interface de Alimentação do Motor e Fonte de Alimentação.

Nome	Função
GND	Fonte de alimentação DC (terra)
+VDC	Eletrodo positivo da fonte de alimentação DC, faixa de tensão de alimentação: DC 24-75Vdc, operação com 24Vdc ou 36Vdc é recomendada
A +	Interface do enrolamento de fase A+ do motor de passo, utilizada em passo de malha aberta e malha fechada, e a interface servo DC não é utilizada
A-/U	Interface do enrolamento de fase A- do motor de passo ou interface do enrolamento de fase U do servo DC
B+/V	Interface do enrolamento de fase B+ do motor de passo ou interface do enrolamento de fase V do servo DC
B-/W	Interface do enrolamento de fase B- do motor de passo ou interface do enrolamento de fase W do servo DC

A tensão de alimentação pode operar normalmente dentro da faixa especificada. Preferencialmente, o driver deve ser fornecido por uma fonte de alimentação DC não regulada, ou por transformador com redução de tensão, retificação em ponte e filtragem por capacitor. Entretanto, é fundamental observar que o pico da ondulação da tensão retificada não deve ultrapassar a tensão máxima especificada. Sugere-se que os usuários utilizem uma tensão DC inferior à tensão máxima para a alimentação, a fim de evitar que flutuações da rede excedam a faixa de operação de tensão do driver. Caso seja utilizada uma fonte de alimentação chaveada regulada, a faixa de corrente de saída dessa fonte deve ser configurada para o máximo.

É importante notar que:


- Deve-se ter atenção à polaridade (polos positivo e negativo) da fonte de alimentação durante a fiação.
- É preferível utilizar uma fonte de alimentação regulada.
- Quando a tensão não é estabilizada, a capacidade de corrente de saída da fonte de alimentação deve ser superior a 60% da corrente configurada no driver.
- Ao utilizar uma fonte de alimentação chaveada regulada, a corrente de saída da fonte deve ser maior ou igual à corrente de trabalho do driver.
- Para redução de custos, dois ou três drives podem compartilhar uma única fonte de alimentação, mas a fonte deve ser adequada.

Interface de Comunicação de Barramento RS485

Adotado o esquema de circuito de interface de isolamento elétrico total do sinal de comunicação RS485, com comunicação estável e confiável.

A porta RS485 é um terminal RJ45 blindado duplex (16 pinos próximos ao lado do terminal do driver).

Pino No.	Sinal	Descrição da Função			
1	RS485-	Sinal RS485 -, ou B (interface de sinal eletricamente totalmente isolada)			
2	RS485+	Sinal RS485+, ou A (interface de sinal eletricamente totalmente isolada)			
3	NC	Reservado, sem conexão elétrica			
4	NC	Reservado, sem conexão elétrica			
5	NC	Reservado, sem conexão elétrica			
6	NC	Reservado, sem conexão elétrica			
7	EGNG	Tecnologia de blindagem de aterramento térmico de sinal, usada em forte interferência			
8	NC	Reservado, sem conexão elétrica			
9	RS485-	Sinal RS485 -, ou B (interface de sinal eletricamente totalmente isolada)			
10	RS485+	Sinal RS485+, ou A (interface de sinal eletricamente totalmente isolada)			
11	NC	Reservado. O pino modificado não pode ser conectado a qualquer equipamento elétrico, ou o driver será queimado			
12	NC	Reservado, sem conexão elétrica			
13	NC	Reservado, sem conexão elétrica			
14	NC	Reservado. O pino modificado não pode ser conectado a qualquer equipamento elétrico, ou o driver será queimado			
15	EGNG	Tecnologia de blindagem de aterramento térmico de sinal, usada em forte interferência			
16	NC	Reservado, sem conexão elétrica			

Nota: O diagrama de pinos do sinal de comunicação da porta de rede é o mesmo para entrada/saída.

Instruções de Configuração da Chave DIP

O driver de barramento STR6-RS485 adota uma chave DIP de 8 bits para configurar o endereço RS485, a taxa de baud e a função de seleção de resistência de terminação.

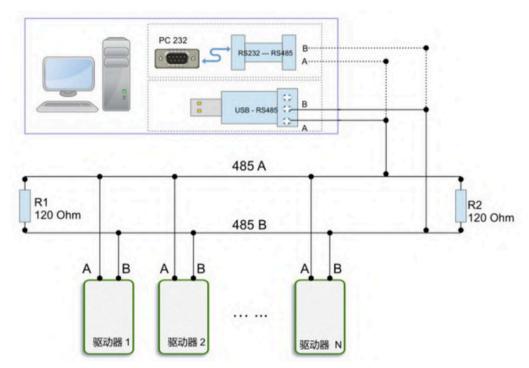
Tabela de ID RS485 (Endereço da Estação Escrava)

Seleção de Endereço ID da Estação Escrava	S1	\$2	\$3	\$4	\$5
Reservado (padrão)	on	on	on	on	on
1	off	on	on	on	on
2	on	off	on	on	on
3	off	off	on	on	on
4	on	on	off	on	on
5	off	on	off	on	on
	•••••	•••••	•••••	•••••	•••••
30	on	off	off	off	off
31	off	off	off	off	off

Nota: A fórmula de cálculo do valor da Tabela de ID RS485 é: $ID = 1 \times S1+2 \times S2+4 \times S3+8 \times S4+16 \times S5$ (onde on=0, off=1). O valor ID padrão é 0, que representa o endereço de broadcast. Outros endereços mais altos podem ser configurados através do upper computer (computador superior).

Tabela de Taxa de Baud Rate RS485

Seleção de Taxa de Baud Rate	SW6	SW7
Padrão (9600Hz, pode ser configurado pelo upper computer)	On	On
19200Hz	off	on
38400Hz	on	off
115200 Hz	off	off


Seleção de Resistência de Terminação RS485

SW8: off = Resistência RS485 desligada (padrão off); On = Resistência RS485 ligada.

Nota: SW8 = on é obrigatório para o drive na extremidade da rede.

Descrição da Comunicação e Protocolos de Comunicação

Layout da Rede

O gerador de curva de aceleração e desaceleração trapezoidal embutido é capaz de realizar a aceleração e desaceleração trapezoidal, bem como operações de comprimento fixo, operação contínua, parada por desaceleração e parada imediata por meio de comandos de comunicação. A operação interna suporta o controle nos modos de posição absoluta e posição relativa, e possui uma função de retorno a zero (zero return) comum embutida para simplificar o desenvolvimento. O gerador de pulso interno utiliza 32 bits para velocidade, aceleração e curso (stroke), o que permite a geração de trajetórias em uma ampla faixa.

Protocolo de Comunicação

É adotado o protocolo MODBUS padrão para comunicação, que suporta 0x03 (leitura de registro), 0x06 (escrita de registro único) e 0x10 (16) (escrita de múltiplos registros).

Formato de comunicação da porta serial: baud rate 9600 \sim 115200, 8 bits de dados, sem verificação de paridade, 1 bit de parada.

Definição de Endereço de Registro MODBUS

Endereço	Nome do Parâmetro	Atributo	Valor Padrão	Intervalo de valores	Descrição do Registro
0	Corrente de pico	R/W	3000	50~7800	Unidade: mA
1	Fração de multas (Subdivisão)	R/W	6000	200~51200	Número de pulsos necessários para um ciclo de operação do motor
2	Tempo de Standby	R/W	300	100~10000	Tempo para o drive entrar em standby, em ms
3	Porcentagem da Corrente de Standby	R/W	50	0~100	Unidade: %
4	Status do Código de Dial (Chave Rotativa)	R			
5	Seleção de Função da Porta de Saída 1	R/W	0	0~2	0: Saída de Alarme 1: Saída no Local (in-place) 2: Freio
6	Nível de Habilitação (Enable)	R/W	1	0~1	
7	Ação do Motor Quando Não Habilitado	R/W	0	0~1	0: Motor Não Travado 1: Eixo do Motor Travado
9	Habilitação de Filtro	R/W	1	0~1	0: Desabilitar 1: Habilitar
10	Tempo de Filtragem	R/W	4000	50~25600	Define o tempo de filtro: μs
13	Habilitação de Autoajuste do Loop de Corrente	R/W	1		0: Desabilitar 1: Habilitar
15	Kp do Loop de Corrente	R/W	1000	10~32767	Quando o autoajuste está habilitado, este item é somente leitura; O usuário pode sobrescrever quando desabilitado
16	Ki do Loop de Corrente	R/W	200	0~32767	Quando o autoajuste está habilitado, este item é somente leitura; O usuário pode sobrescrever quando desabilitado
18	Seleção de Taxa de baud rate	R/W	96	96~1152	96 = 9600
22	Valor Efetivo de Corrente	R	3500	1~4200	Unidade: mA

Endereço	Nome do Parâmetro	Atributo	Valor Padrão	Intervalo de valores	Descrição do Registro
24	Seleção de Malha Aberta e Fechada	R/W	2	0~2	1: Malha Aberta 2: Malha Fechada
26	Percentual de corrente operacional	R/W		0~100	
31	Nº ID do Equipamento	R			
39	Número Total de Pulsos Baixo (L)	R			O número de pulsos externos recebidos é o mais baixo de 16 bits
40	Número Total de Pulsos Alto (H)	R/W			O número de pulsos externos recebidos é o mais alto de 16 bits Escrita: Escrever 1 Limpa o Contador
41	Total de <i>Feedback</i> do <i>Encoder</i> Baixo (L)	R			Escrever 1 Limpa a Contagem
42	Total de <i>Feedback</i> do <i>Encoder</i> Alto (H)	R/W			Escrever 1 Limpa a Contagem
48	Tensão do Barramento	R			Retorna a tensão do barramento. Unidade: 0,1V
51	Direção de Operação do Motor	R/W	1		0: Direção de funcionamento do motor inalterada 1: Inverte a direção de funcionamento do motor
56	Seleção de Detecção de Falha	R/W	327	0~65535	
57	Habilitação de Seleção para Limpeza de Falha por Sinal <i>Enable</i>	R/W	1	0~1	0: Não Permitido 1: Permitido
60	Velocidade de Retorno a Zero	R/W	600	0~65535	Unidade: pulso/s
62	Desaceleração Baixa 16 bits	R/W	10176	0~65535	Unidade: pulso/s ^ 2
63	Desaceleração Alta 16 bits	R/W	9	0~65535	Unidade: pulso/s ^ 2
64	Velocidade Baixa 16 bits	R/W	6000	0~65535	Unidade: pulso/s

Endereço	Nome do Parâmetro	Atributo	Valor Padrão	Intervalo de valores	Descrição do Registro
65	Velocidade Alta 16 bits	R/W	0	0~65535	Unidade: pulso/s
66	Aceleração Baixa 16 bits	R/W	10176	0~65535	Unidade: pulso/s ^ 2
67	Aceleração Alta 16 bits	R/W	9	0~65535	Unidade: pulso/s ^ 2
68	Curso (Trajeto) Baixo 16 bits	R/W	6000	0~65535	Unidade: pulso
69	Curso (Trajeto) Alto 16 bits	R/W	0	0~65535	Unidade: pulso
70	Comando de Movimento	R/W	0	0~5	Acione o movimento correspondente e, em seguida, o endereço muda para 6 0 - Diminua a velocidade até parar 1 - Movimento para a frente de comprimento fixo 2 - Movimento para trás de comprimento fixo 3 - Movimento contínuo para a frente 4 - Movimento contínuo para trás 5 - Pare imediatamente 6 - Valor padrão, sem significado
71	Comando de Retorno a Zero	R/W	0	0~2	0: Sair do retorno a zero 1: Retornar a zero com o sinal de limite positivo como ponto zero 2: Retornar a zero com o sinal de limite negativo como ponto zero
72	Modo de Funcionamento do Movimento de Comprimento Fixo	R/W	0	0/1	0: Modo Incremental 1: Modo Absoluto
73	Registro de Controle do Dispositivo	R/W			Consulte "Registrador de controle de acionamento" para a definição específica de bits.
74	Tempo de Filtragem do Limite de Zeragem	R/W	10	A 65535	Indica 50 µs
75	Registro de Status do Dispositivo	R			Consulte "Registrador de status de acionamento" para leitura específica de bits.

Endereço	Nome do Parâmetro	Atributo	Valor Padrão	Intervalo de valores	Descrição do Registro
90	Salvar Parâmetros	R/W	0	0/1	Leitura deste endereço: Retorna 0: Salvamento incompleto. Retorna 1: O salvamento foi concluído
91	Restaurar Padrões de Fábrica	R/W	0	0/1	Escrever 1 para iniciar a limpeza; Leitura deste endereço: Retorna 0: Limpeza incompleta Retorna 1: A limpeza foi concluída
93	Limpar a Falha	R/W	0	0~1	Escrever 1 para limpar a falha, a limpeza é concluída e retorna automaticamente para 0
104	Configuração do Valor de Alarme de Rotor Travado	R/W	650	A 65535	
106	Valor de Amostragem da Fase A	R			
107	Valor de Amostragem da Fase B	R			
115	Valor de Alarme de Corrente	R			1: Representa sobrecorrente 2: sobretensão 3: subtensão 4: perda de fase 6: rotor travado em malha aberta 7: rotor travado em malha fechada 9: falha do <i>drive</i>
135	Flange do Motor	R/W			200: Motor de flange 28 400: Motor de flange 42 500: Motor de flange 57 600: Motor de flange 60 800: Motor de flange 86
147	Seleção de Função da Porta de Saída 2	R/W	2	0~2	0: Saída de Alarme 1: Saída no Local (<i>in-place</i>) 2: Freio

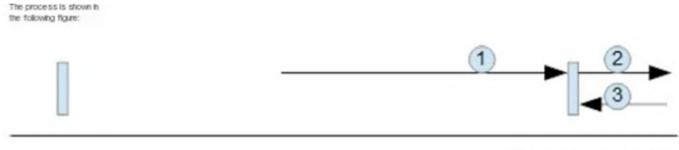
Registrador de controle de acionamento (Endereço 73)

Definição do Bit (BDD)	Descrição do Nome	Valor Padrão	Descrição
7~15	Reservado para uso	0	Nada
6	Habilitação de Movimento Acionado por IO (Geralmente, o DIR padrão é a porta de acionamento)	0	0 - Porta de acionamento não funciona. 1 - A porta de acionamento pode acionar o movimento.
2~5	Reservado para uso	0	Nada
1	Nível do sinal de limite negativo (Geralmente, o IN3 padrão é o limite negativo)	1	0 - O limite negativo ocorre quando o optoacoplador é desligado. 1 - O limite negativo ocorre quando o optoacoplador está conduzindo.
0	Nível do sinal de limite positivo (Geralmente, o IN2 padrão é o limite positivo)	1	 0 - O limite positivo ocorre quando o optoacoplador é desligado. 1 - O limite positivo ocorre quando o optoacoplador está conectado.

Registro de Status do Driver (Endereço 75)

Definição do Bit (BDD)	Descrição do Nome	Valor Padrão	Explicação		
8~15	hold (Manter)	0	hold (Manter)		
7	MOVIMENTO CONCLUÍDO	1			
6	hold (Manter)	0	0		
5	Posição de limite negativo	0	0 - Sem sinal de limite negativo. 1 - Com sinal de limite negativo.		
4	Posição de limite positivo	0	0 - Sem sinal de limite positivo. 1 - Com sinal de limite positivo.		
2~3	hold (Manter)	0			
1	Sobretensão (Over voltage)	0	0 - Sem sobrepressão. 1 - Sobretensão ocorrida.		
0	Sobrecorrente (Overcurrent over)	0	0 - Sem sobrecorrente. 1 - Sobrecorrente ocorrida.		

Função de Retorno a Zero


Retorno a Zero com Sinal de Limite Positivo como Ponto Zero

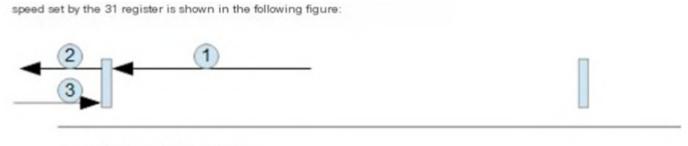
O processo de zeragem após escrever "1" no endereço de registro 71 (comando de retorno a zero) é o seguinte:

Etapa 1: Executar para frente até o limite positivo com a velocidade e aceleração configuradas no endereço de registro 62~67.

Etapa 2: Desacelerar e parar após o sinal de limite positivo ser detectado.

Etapa 3: Executar até o sinal de limite na direção de velocidade negativa configurada no endereço de registro 60 (velocidade para zero).

With positive limit as zero point


Retorno a Zero com Sinal de Limite Positivo como Ponto Zero

O processo de retorno a zero após escrever "2" no endereço de registro 71 (comando de retorno a zero) é o seguinte:

Etapa 1: Executar até o limite negativo com a velocidade e aceleração configuradas no endereço de registro 62~67.

Etapa 2: Desacelerar e parar após o sinal de limite negativo ser detectado.

Etapa 3: Executar até o sinal de limite na direção positiva da velocidade configurada no endereço de registro 60 (velocidade para zero).

Taking negative limit as zero point

Sair do Retorno a Zero

Escreva "0" no endereço de registro 71 (comando de retorno a zero) e o drive sai do processo de retorno a zero e a desaceleração para.

Após a conclusão do retorno a zero, o cliente deve escrever '1' no endereço de registro 40, conforme a necessidade (por exemplo, no modo de posição absoluta), para que o contador de pulsos possa ser limpo.

Código de Função Comum MODBUS

Comando Ler Registros de Retenção (Read Holding Register) 0x03

Host -> Dados do Escravo (Slave)

Endereço do Equipamento	Código de Função	Endereço do RA	•	Número de Re Ler	egistros a	Verificação CRC		
1	3	О	o	0 1		85	A:	

Escravo (Slave) -> Dados do Host

Endereço do Equipamento	Código de Função	Contagem de Bytes Retornados	Número de Registros		Verificação CRC		
1	3	2	A:	C:	BF:	41	

O valor da corrente retornado pelo escravo (endereço de registro 00) é de 2700mA.

Comando Escrever Registro Único (Write Single Register) 0x06

Host -> Dados do Escravo (Slave)

Endereço do Equipamento	Código de Função	Endereço do Registro £¬ RAA		Dados a	Escrever	Verificação CRC		
1	6	0	40	6	40	A	E:	

Escravo (Slave) -> Dados do Host

Endereço do Equipamento	Código de Função	Endereço do Registro £- RAA		Dados a	Escrever	Verificação CRC		
1	6	O	40	6	40	A	E:	

Comando Escrever Registro Único (Write Single Register) 0x06

Host -> Dados do Escravo (Slave)

Endereço do Equipamento	Código de Função	Ende Inic	reço cial		ero de critas	Número de Bytes	Conte		Conte Escre	eúdo a ver (2)	Verific CI	cação RC
1	10	O	44	0	2	4	38	80	0	1	В:	24

Escravo (Slave) -> Dados do Host

Endereço do Equipamento	Código de Função	ăo Endereço Inicial		Número	de Escritas	Verificação CRC		
1	10	0	44	0	2	1	DD (DD)	

Escreve 14464 para o curso de 16 bits baixos (endereço de registro 64) e 1 para o curso de 16 bits altos (endereço de registro 64) do escravo, ou seja, o curso total é de 80000 pulsos.

Rotina de Verificação CRC

A rotina a seguir calcula o CRC (Verificação de Redundância Cíclica) em linguagem C:

```
Uint16 Function_ CRC16 (unsigned char * puchMsg, Uint16 DataLen) {
Uint16 i, j, tmp;
Uint16 crcdata=0xFFFF;
For (i=0; i<Data; i++) {
Crcdata=(* puchMsg) ^ crcdata;
PuchMsg++;
For (j=0; j<8; j++) {
Tmp=crcdata&0x0001;
Crcdata=crcdata>>1;
If (tmp){
Crcdata=crcdata ^ 0xA001;
}
}
Returncrcdata;
```

