

# STR6-RS485 RS485 OPEN LOOP STEP MOTOR DRIVE User's Manual



## Preface

| word                                                   | 3  |
|--------------------------------------------------------|----|
| 1 Overview                                             | 4  |
| 1.1 Product Introduction                               | 4  |
| 1.2 Characteristics                                    | 4  |
| 1.3 Application areas                                  | 5  |
| 2 Performance Index                                    | 5  |
| 2.1 Electrical characteristics                         | 5  |
| 2.2 Use environment                                    | 6  |
| 3 Installation                                         | 6  |
| 3.1 Mounting dimensions                                | 6  |
| 3.2 Installation method                                | 7  |
| 3.3 <b>4 Driver ports and wiring</b>                   | 7  |
| 4.1 Schematic diagram of wiring                        |    |
| 4.2 Port Definition                                    |    |
| 5 Instructions for setting the dial switch             |    |
| 6 Communication and communication protocol description |    |
| 5.1 Network layout                                     |    |
| 5.2 Communication protocol                             | 14 |
| 5.3 Return to zero function                            |    |
| 5.4 MODBUS Common function code                        | 21 |
| 5.5 CRC Validation routines                            | 23 |
| 7 Warranty and after-sales service                     |    |

#### Foreword

Thank you for using our open step drive.

Before using this product, please read this manual carefully to understand the necessary safety information, precautions, and operation methods.Incorrect operation can have extremely serious consequences.

This product is designed and manufactured without the ability to protect personal safety from mechanical system threats. Users are advised to consider safety precautions during mechanical system design and manufacturing to prevent accidents caused by improper operation or product abnormalities.

Due to product improvements, the contents of this manual are subject to change without notice. Our company will not be responsible for any modification of the product by the user.

When reading, please pay attention to the following signs in the manual:



Note: To draw your attention to the main points in the text.



Caution: Indicates that improper operation can result in personal injury and damage to equipment.

This product has passed the national mandatory 3C certification, CE certification, ROHS certification



### **1 Overview**

#### **1.1 Product Introduction**

RS485 Bus driver of Modle Bus Standard introduced by our company. It adopts the latest 32-bit DSP digital processing technology. The driver control algorithm adopts advanced variable current technology and advanced frequency conversion technology. The driver generates less heat and them or vibrates less, smooth operation. The user can set any IDaddres swithin 1-255 and any current value within the rated current, which can meet the needs of most applications. The bus driver can drive two-phase open-loop stepper motor, three-phase open-loop stepper motor, hybrid servo motor, brushless DC servo motor, etc... Due to the use of built-in micro-subdivision technology, even in the conditions of low subdivision, but also can achieve high subdivision effect, low, medium and high-speed operation is very smooth, ultra-low noise. The auto-tuning functionis integrated in the driver, which can automatically generate the optimal operating parameters for different motors and maximize the performance of the motors.

#### **1.2 Characteristics**

•New 32-bit DSP technology

●1 way 0-5V analog input

•Four-way optocoupler isolated OC output

•Automatic parameter power-on setting function

•Variable current control greatly reduces the heat generation of the motor.

ullet The current is automatically halved at rest

• Can drive a variety of loop stepper motor

 $\bullet 5$  photoelectricity isolation signal inputs, 2 of which are high-speed optocoupler isolation

● COMMUNICATION FREQUENCY UP TO 1MHZ (factory Default 9600HZ)

• Easy to set the current, can be in between

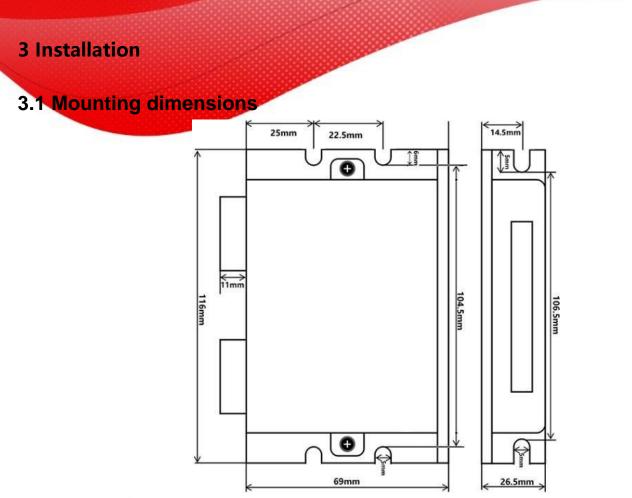
0.1-8.0 a arbitrary choice

• With over-voltage, under-voltage, over-current and other protection functions

#### **1.3 Application areas**

Suitableforallkindsofsmallandmedium-sizedautomaticequipmentandinstruments, such as AGV, speed door, engraving machine, marking machine, cutting machine, laser phototypesetting, plotter, CNC machine tools, automatic assembly equipment, etc... It works especially well on devices that users expect to have low noise and high speed.

### 2 Performance Index


#### 2.1 Electrical characteristics

|                                    | RS0872        |               |               |      |  |  |
|------------------------------------|---------------|---------------|---------------|------|--|--|
| Account for                        | Minimum value | Typical value | Maximum value | Unit |  |  |
| Output Current (peak)              | 0. 1          | _             | 7.2           | А    |  |  |
| Input Power Supply<br>Voltage (DC) | 24            | 24/36/48      | 75            | VDC  |  |  |
| Control signal input<br>current    | 6             | 10            | 16            | mA   |  |  |
| Control signal<br>interface level  | 5             | 5             | 24            | Vdc  |  |  |

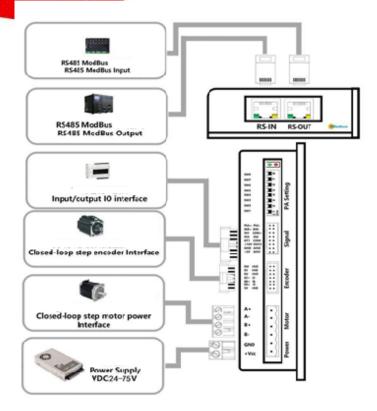
| OC output pull-up<br>voltage | 5   | 24   | Vdc |
|------------------------------|-----|------|-----|
| RS485 frequency              | 1   | 1000 | KHz |
| Analog voltage input         | 0   | 5    | Vdc |
| Insulation Resistance        | 100 |      | MΩ  |

# 2.2 Use environment

| Cooli                                          | ng Mode     | Natural Cooling or forced air cooling                                                                                                                                                           |
|------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service<br>Environment                         | Occasion    | Cannotbeplacednexttootherheatingequipment, toavoiddust, oil<br>mist, corrosive gases, humidity is too large and strong<br>vibration sites, prohibited combustible gases and conductive<br>dust. |
|                                                | Temperature | $-10^{\circ}\mathrm{C} \sim +50^{\circ}\mathrm{C}$                                                                                                                                              |
|                                                | Humidity    | $40 \sim 90\%$ RH                                                                                                                                                                               |
|                                                | Vibration   | 5.9m/s2MAX                                                                                                                                                                                      |
| Storage temperature<br>Use Elevation<br>Weight |             | $-20^{\circ}\mathrm{C}\sim 60^{\circ}\mathrm{C}$                                                                                                                                                |
|                                                |             | 1000 米以下<br>Below 1000 meters                                                                                                                                                                   |
|                                                |             | 0. 2KG                                                                                                                                                                                          |



### 3.2 Installation method


Thereliable operating temperature of the driver is usually within 60, and the motor operating temperature is within  $80^{\circ}$ C.

It is recommended to use the automatic semi-flow mode when using the motor. When the motor stops, the current is automatically reduced by half to reduce the heat of the motor and the drive.

Install the drive with vertical side mounting so that the heat dissipating teeth form a strong air convection.

Install a fan near the drive when necessary to force heat dissipation to ensure that the drive works within a reliable operating temperature range. 4 Driver ports and wiring

4.1 Schematic diagram of wiring



### **4.2 Port Definition**

### 4.2.1LED Lamp status indication

The blue LED on the left is the power indicator, which is always on when the driver is poweredon, and goes outwhen the driver cut soff the power. The blue LED is the fault indicator, When there is a fault, the indicator lamp for 3 seconds cycle flashing; When the fault is cleared by the user, the blue LED often out. Red Led flashes in 3 seconds represent different failure information, as shown in the table below:

| No. | The number | Red LED flashes waveform | Description of the problem                       |
|-----|------------|--------------------------|--------------------------------------------------|
|     | of flashes |                          |                                                  |
| 1   | 1          | ΠΠ_                      | Overcurrent or interphase short<br>circuit fault |
| 2   | 2          |                          | Overvoltage fault                                |
| 3   | 3          |                          | Under voltage fault                              |

# 4.2.2 Control Signal Input Port

7

4

Control Signal interface

nnn

 $\mathbb{P}$ 

| Name | Function                                                                                                                     |
|------|------------------------------------------------------------------------------------------------------------------------------|
| PL+  | HIGH-SPEED SIGNAL: Pulse rising edge is effective, PL highlevel 5 $^{\sim}$ 24 VDC,                                          |
| PL-  | Low Level 0 $^{\sim}$ 0.5 v. In order to respond reliably to the pulse signal, the pulse width should be greater than 1.5 s. |
| DR+  | HIGH-SPEED SIGNAL: Pulse rising edge is effective, PL highlevel 5 $^{\sim}$ 24 VDC,                                          |
| DR-  | Low Level 0 $^\sim$ 0.5 v. In order to respond reliably to the pulse signal, the pulse width should be greater than 1.5 s.   |
| IN+  | Low speed signal: IN1, IN2, IN3 common anode input, level 5-24V compatible                                                   |
| IN1  | Negative input of low speed signal IN1                                                                                       |
| IN2  | Negative input of low speed signal IN2                                                                                       |
| IN3  | Negative input of low speed signal IN3                                                                                       |
| OT-  | Common Cathode OC emitter output, OT1, OT2 emitter OC output common terminal                                                 |
| OT1  | OT1 emitter output, maximum pull-up voltage 24VDC, pull-up resistance 2K, maximum output current 100mA                       |
| OT2  | OT2 emitter output, maximum pull-up voltage 24VDC, pull-up resistance 2K, maximum output current 100mA                       |
| 10V  | Reserve                                                                                                                      |
| AIN2 | Reserve                                                                                                                      |
|      | 1                                                                                                                            |

| GND | Reserve |
|-----|---------|
| AIN | Reserve |
| 5V  | Reserve |

## 4.2.3 Encoder signal and Houle signal interface

| Name | Function                                                                                          |
|------|---------------------------------------------------------------------------------------------------|
| EA+  | Closed-loop step-by-step encoder reservation                                                      |
| EA-  |                                                                                                   |
| EB+  | Closed-loop step-by-step encoder reservation                                                      |
| EB-  |                                                                                                   |
| EZ+  | Closed-loop step-by-step encoder reservation                                                      |
| EZ-  | closed loop step by step encodel reservation                                                      |
| EU+  | Brushless reserve                                                                                 |
| EU-  |                                                                                                   |
| EV+  | Brushless reserve                                                                                 |
| EV-  |                                                                                                   |
| EW+  | Brushless reserve                                                                                 |
| EW-  |                                                                                                   |
| 5V   | It supplies the motor's encoder and Houle element with a DC voltage of 5V and a current of 100mA. |
| GND  | 5V Reference Terminal Negative                                                                    |

## 4.2.4 Output ports of power supply and motor

Power supply and motor power interface.

| Name | Function        |
|------|-----------------|
| GND  | DC power source |

| +VDC | DC Power Supply Positive Pole, supply voltage range: DC 24 $^{\sim}$ 75VDC, recommended 24VDC or 36VDC work.                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| A+   | A phase winding interface for stepper motor,Open-loop steppingand closed-loop<br>stepping are used, DC servo is not used for this interface |
| A–   | A-phase winding interface<br>of stepper motor                                                                                               |
| B+   | B phase winding interface for stepper motor                                                                                                 |
| В-   | B-phase winding interface<br>of stepper motor                                                                                               |

The power supply voltage can work normally between the specified ranges. The driver is prefer ably powered by naun regulated DC power supply, or a transformer buck+bridge rectifier + capacitor filter. Note, however, that the peak voltage ripple after rectification should not exceed its specified maximum voltage. It is recommended that the user supply power with a DC voltage lower than the maximum voltage to prevent the grid from fluctuating beyond the operating range of the driver voltage.

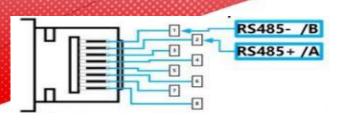
If using a regulated switching power supply, be aware that the output current range of the switching power supply must be set to maximum.

Please note:

When wiring, pay attention to the positive and negative poles of the power supply, do not reverse connection;

It is better to use an unstable power supply;

The output capacity of the power supply current should be greater than 60% of the set current of the driver when an unstable power supply is used;


When a regulated switching power supply is adopted, the output current of the power supply shall be greater than or equal to the working current of the driver;

To reduce costs, two or three drives can share a power supply, but the power supply should be large enough.

#### 4.2.5 RS485 bus communication interface

The RS485 port is a duplex with shielded RJ45 terminals (16 pins near the driver terminal side)

| in Number | Signal    | Function description                                                |
|-----------|-----------|---------------------------------------------------------------------|
| 1         | RS485-    | RS485-SIGNAL, or B                                                  |
| 2         | RS485+    | RS485 signal, or A                                                  |
| 3         | NC        | No, hold                                                            |
| 4         | EGNG      | Signal ground                                                       |
| 5         | EGNG      | Signal ground                                                       |
| 6         | NC        | No, hold                                                            |
| 7         | EGNG      | Signal hot ground shielding technology, used in strong interference |
| 8         | EGNG      | Signal ground                                                       |
| 9         | RS485-    | RS485-SIGNAL, or B                                                  |
| 10        | RS485+    | RS485 signal, or A                                                  |
| 11        | RS232-RXD | RS232 serial port, TTL-3.3 V level, serial debugging settings       |
| 12        | EGNG      | Signal ground                                                       |
| 13        | EGNG      | Signal ground                                                       |
| 14        | RS232-TX  | RS232 serial port, TTL-3.3 V level, serial debugging settings       |
| 15        | EGNG      | Signal hot ground shielding technology, used in strong interference |
| 16        | NC        | No, hold                                                            |



Note: the above diagram is the definition diagram of network communication signal pin, the input/output is the same

### 5 Instructions for setting the dial switch

RSO872 bus-type drive motor adopts 8-bit dial switch to set RS485 address, Baud rate and terminal matching resistance selection function, as follows:

Note: Low 5-bit RS485 address is set by dialing, high 2-bit RS485 address is set by host computer.

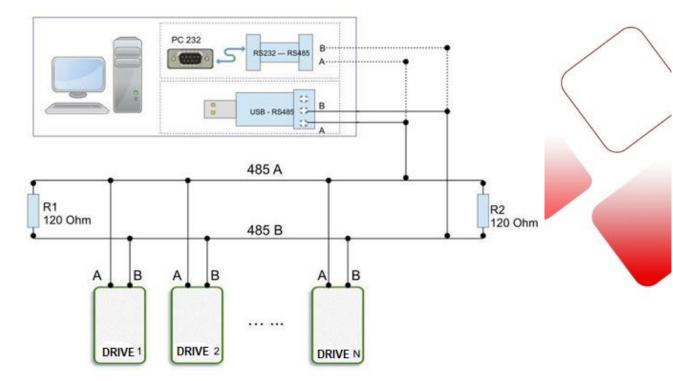
| N3403 ID Table |     |     |     |     |     |   |
|----------------|-----|-----|-----|-----|-----|---|
| ID             | S1  | S2  | S3  | S4  | S5  |   |
| Reserved       | On  | On  | On  | On  | On  | / |
| 1              | Off | On  | On  | On  | On  |   |
| 2              | On  | Off | On  | On  | On  |   |
| 3              | Off | Off | On  | On  | On  |   |
| 4              | On  | On  | Off | On  | On  |   |
| 5              | Off | On  | Off | On  | On  |   |
|                |     |     |     |     |     |   |
| 30             | On  | Off | Off | Off | Off |   |
| 31             | Off | Off | Off | Off | Off |   |

RS485 ID Table

Note: The formula for calculating the value of the RS485 ID table is: ID = 1 \* S 1 + 2 \* s 2 + 4 \* s 3 + 8 \* s 4 + 16 \* S 5. The Default ID value is 0,0 is the broadcast address, and other higher addresses can be set through the host computer.

RS485 Baud Rate Table

| Baud Rate SW6 | SW7 |
|---------------|-----|
|---------------|-----|


| Default (9600HZ, set by PC) | On  | On  |
|-----------------------------|-----|-----|
| 19200Hz                     | Off | On  |
| 38400Hz                     | On  | Off |
| 57600 Hz                    | Off | Off |

SW8: off=RS485 R off, (Default to)off; on= RS485 R on

Note: The drive at the end of the network requires SW8 = on.

#### 6 Communication and communication protocol description

#### 6.1 Network layout



Built-in trapezoidal acceleration and deceleration curve generator, can trapezoidal acceleration and deceleration, through communication commands to achieve fixed-length operation, continuous operation, deceleration stop, immediately stop. Internal operation supports absolute position mode and relative position mode control, built-in common return to zero function, simplify the development. The internal pulse generator uses 32-bit speed, acceleration, and stroke to achieve wide range of trajectory generation.

## 6.2 Communication protocol

The communication adopts the standard Modbus protocol, which supports0x03(readregister), 0x06(writesingleregister), 0x10(16)(writemultipleregisters). Serial communication format: baud rate 9600 115200, 8 data bits, no parity check, 1 stop bit.

## 6.2.1 MODBUS Register address definition

| The p | parameter attri | The | The range | Register description |
|-------|-----------------|-----|-----------|----------------------|
|-------|-----------------|-----|-----------|----------------------|

| site | name                             | bute  | defau1     | of values     |                                                                     |
|------|----------------------------------|-------|------------|---------------|---------------------------------------------------------------------|
|      |                                  |       | t<br>value |               |                                                                     |
| 0    | Peak current                     | R/W/S | 5000       | 1~6000        | Unit: Ma                                                            |
| 1    | The fine<br>fraction             | R/W/S | 6000       | 200~<br>51200 | The number of pulses required to<br>run a motor in one turn.        |
| 2    | Standby time                     | R/W/S | 300        | 100~<br>10000 | The time the drive is on standby, unit: ms                          |
| 3    | Percentage of<br>standby current | R/W/S | 50         | 0~100         | Unit: %                                                             |
| 4    | Dial the code<br>state           | R     |            |               |                                                                     |
| 10   | Filtering<br>time                | R/W/S | 4000       | 50~25600      | Set the filtering time of the filter:us                             |
| 15   | Current Kp<br>loop               | R/W/S | 1000       | 100~32767     | When self-setting is<br>enabled, the item<br>read-only;The user can |

|    |                            | 1     |      |                      |                                                              |
|----|----------------------------|-------|------|----------------------|--------------------------------------------------------------|
|    |                            |       |      | 200 C                | rewrite when it is not<br>enabled.                           |
| 16 | Current loopKi             | R/W/S | 200  | 0~32767              | When self-setting                                            |
|    |                            |       |      |                      | enabled, the item is                                         |
|    |                            |       |      |                      | read-only;The user can<br>rewrite when it is not<br>enabled. |
| 18 | Baud rate<br>selection     | R/W/S | 96   | 96 <sup>~</sup> 1152 | 96 said 9600                                                 |
| 22 | Effective<br>current value | R/W/S | 3500 | 1~4200               | Unit: Ma                                                     |
| 31 | Device ID no.              | R     |      |                      |                                                              |
| 39 |                            | R     |      |                      |                                                              |

|    | Total number of<br>pulses L |     | 16bit<br>The number of external                                                                              |
|----|-----------------------------|-----|--------------------------------------------------------------------------------------------------------------|
|    |                             |     | pulsesreceivedis16bit                                                                                        |
|    |                             |     | lower                                                                                                        |
| 40 | Total number of<br>pulses H | R/W | 16bit<br>The number of external<br>pulsesreceivedis16bit<br>higher<br>Write: Write 1 to clear<br>the counter |
| 48 | Bus voltage                 | R   | Return bus voltage unit<br>0.1V                                                                              |

| 51 | Motor running<br>direction  | R/W/S | T    | 0/1            | 0:Therunningdirection of<br>the motor remains<br>unchanged |
|----|-----------------------------|-------|------|----------------|------------------------------------------------------------|
|    |                             |       |      |                | 1: the motor running                                       |
|    |                             |       |      |                | direction is reversed                                      |
|    |                             |       |      |                |                                                            |
| 60 | Back to zero                | R/W/S | 200  | 0~65535        | pulse/s                                                    |
|    | velocity                    |       |      |                |                                                            |
| 62 | Acceleration                | R/W/S | 3200 | 0~65535        | pulse/s^2                                                  |
|    | reduction is<br>lower 16bit |       |      |                |                                                            |
| 63 | Deceleration                | R/W/S | 0    | 0~65535        | pulse/s^2                                                  |
|    | height 16bit                |       |      |                | /                                                          |
| 64 | 16bit                       | R/W/S | 1600 | 0~65535        | pulse/s                                                    |
|    | Low speed                   |       |      |                |                                                            |
| 65 | 16bit<br>High speed         | R/W/S | 0    | 0~65535        | pulse/s                                                    |
| 66 | 16bit                       | R/W/S | 3200 | 0~65535        | pulse/s^2                                                  |
| 67 | Low acceleration            | D/W/C | 0    | 0. 65525       |                                                            |
| 07 | 16bit<br>High               | R/W/S | 0    | $0{\sim}65535$ | pulse/s <sup>2</sup>                                       |
|    | acceleration                |       |      |                |                                                            |
| 68 | Low 16 bit                  | R/W/S | 1600 | 0~65535        | pulse                                                      |
| 69 | High 16 bit                 | R/W/S | 0    | 0~65535        | pulse                                                      |
| 70 | Sports                      | R/W   | 0    | 0~5            |                                                            |

|    | instruction  |             |   |      | Trigger the           |
|----|--------------|-------------|---|------|-----------------------|
|    |              |             |   |      | corresponding motion, |
|    |              | 100         |   |      | and then the address  |
|    |              |             |   |      | changes to 6          |
|    |              |             |   |      | 0 Slow down to a stop |
|    |              |             |   |      | 1 Forward constant    |
|    |              |             |   |      | length motion         |
|    |              |             |   |      | 2 Reverse fixed       |
|    |              |             |   |      | length movement       |
|    |              |             |   |      | 3 Forward continuous  |
|    |              |             |   |      | motion                |
|    |              |             |   |      | 4 Continuous reverse  |
|    |              |             |   |      | motion                |
|    |              |             |   |      | 5 Stop immediately    |
|    |              |             |   |      | 6 Default value,      |
|    |              |             |   |      | meaningless           |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      | (                     |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
| 71 | Back to the  | R/W         | 0 | 0~2  | 0 Exit back to zero   |
| (1 |              | <b>Γ/ W</b> | 0 | 0 2  | 1 Zero to zero with   |
|    | zero         |             |   |      | theforwardlimitsignal |
|    |              |             |   |      | 2 Zero to zero with   |
|    |              |             |   |      | negative limit signal |
|    |              |             |   |      | negative inmit Signai |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              | D / W       |   | 0 /1 |                       |
| 72 | Fixed length | R/W         | 0 | 0/1  | 0: Incremental mode   |
|    | movement     |             |   |      | 1: Absolute mode      |
|    | working mode |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |
|    |              |             |   |      |                       |

| 73 | device control<br>register | R/W/S |    |         | See 2.2.1 for the specific bit definition |
|----|----------------------------|-------|----|---------|-------------------------------------------|
| 74 |                            | R/W/S | 10 | 0~65535 | 1 said 50 us                              |

|                     | Return to zero<br>limit filtering<br>time |     |   |     |                                                                                                                               |
|---------------------|-------------------------------------------|-----|---|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 75                  | device status<br>register                 | R   |   |     | See 2.2.2 for the specific bit definition                                                                                     |
| 90                  | Save the<br>parameters                    | R/W | 0 | 0/1 | Read the address:<br>Return 0: Save<br>incomplete<br>Return 1: The save is<br>complete                                        |
| 91                  | Restore factory<br>default<br>parameters  | R/W | 0 | 0/1 | Write 1 to start the<br>cleanup;<br>Read the address:<br>Return 0: Clear<br>unfinished<br>Return 1:The cleanup<br>is complete |
| 92 <sup>~</sup> 150 | reserved                                  | R   |   |     | reserved                                                                                                                      |

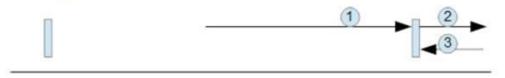
|              |                                                                          | 00000                   |                                                                                                                             |
|--------------|--------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| A definition | Name & Description                                                       | The<br>default<br>value | description                                                                                                                 |
| 7~15         | reserved                                                                 | 0                       | No                                                                                                                          |
| 6            | IO triggers motion<br>enablement<br>(In1 is the default<br>trigger port) | 0                       | 0 The trigger port<br>is inactive<br>1 The trigger port<br>can trigger the motion                                           |
| 2~5          | Reserved                                                                 | 0                       | No                                                                                                                          |
| 1            | Negativelimitsignal<br>level<br>(default IN3 is<br>negative)             | 1                       | Negative limit occurs<br>when<br>0 optocoupler is<br>turned off<br>1 Negative limit<br>occurs when the<br>optocoupler is on |
| 0            | Positivelimitsignal<br>level<br>(In2 is a positive<br>limit by default)  | 1                       | Positive limit occurs<br>when<br>0 optocoupler is<br>turned off<br>1 Positive limit<br>occurs when the<br>optocoupler is on |

## 6.2.2 Driver status register

| A definition      | Name &<br>Description | The default<br>value | explain |
|-------------------|-----------------------|----------------------|---------|
| 8 <sup>~</sup> 15 | retain                | 0                    | retain  |

| 7           | Movement to    | 1 | 1——内部脉冲发送<br>完成 0——内部脉冲 |
|-------------|----------------|---|-------------------------|
|             | complete       |   | 元成 0——內部脉冲<br>未完成       |
|             |                |   | 1 Internal              |
|             |                |   | pulse transmission      |
|             |                |   | completed               |
|             |                |   | 0 Internal pulse        |
|             |                |   | is incomplete           |
| 6           | retain         | 0 | 0                       |
| 5           | Negative limit | 0 | 0——No negative          |
|             |                |   | limit signal 1          |
|             |                |   | a negative limit        |
|             |                |   | signal                  |
|             |                |   |                         |
| 4           | positive limit | 0 | 0 No positive           |
|             |                |   | limit signal 1          |
|             |                |   | Positive limit          |
|             |                |   |                         |
|             |                |   | signal                  |
| $2^{\sim}3$ | retain         | 0 |                         |
| 1           | overpressure   | 0 | 0 - no overvoltage      |
|             |                |   | 1 Overpressure          |
|             |                |   | occurs                  |
| 0           | Over current   | 0 | 0 - no flow             |
| V           |                | V | 1 Overflow              |
|             |                |   | occurred                |
|             |                |   |                         |
|             |                |   |                         |

#### 6.3 Return to zero function


#### 6.3.1 The forward limit signal is zero to zero

After writing "1" to register address 71 (return to zero command), the return to zero process is as follows:

Step1:Runforwardtothepositivelimitatthespeedandaccelerationsetatregisteraddresses from 62 to 67.

Step 2: Slow down and stop when positive limit signal is detected.

Step 3: Run to the limit signal in the negative direction of the speed set at register address 60 (return to zero speed).



#### 6.3.2 The negative limit signal is zero to zero

After writing "2" to register address 71 (return to zero command), the return to zero process is as follows:

Step 1: Run negative to the negative limit with the speed and acceleration set at register 62  $^{\sim}$  67 addresses.

Step 2: Slow down and stop when negative limit signal is detected.

Step 3: Run in the positive direction of the speed set by register address 60 (return zero speed) to the limit signal.



#### 6.3.3 Exit back to zero:

After writing "0" to register address 71 (return to zero command), the driver exits the return to zero process and slows down to stop. After returning to zero, the client writes 1 at the register address 40 as needed (such as in absolute position mode) The pulse counter can be cleared.

## 6.4 MODBUS Common function codes

### 6.4.1 Read holding register command 0x03

Host -> Slave Data

| Device  | Function | Register |    | Number            | of |           |    |  |
|---------|----------|----------|----|-------------------|----|-----------|----|--|
| address | code     | address  |    | registers<br>read |    | CRC check |    |  |
| 01      | 03       | 00       | 00 | 00                | 01 | 85        | OA |  |

Slave  $\rightarrow$  Host Data

| Device<br>address | Function<br>code | Number of<br>bytes<br>returned | Regist<br>count | Register<br>count |    | CRC check |  |
|-------------------|------------------|--------------------------------|-----------------|-------------------|----|-----------|--|
| 01                | 03               | 02                             | OA              | 8C                | BF | 41        |  |

The return current value of the slave (register address 00) is 2700mA.

#### 6.4.2 Write single register command 0x06

Host  $\rightarrow$  Slave Data

| Device<br>address | Function code | Register<br>address |    | Write data |    | CRC check |    |
|-------------------|---------------|---------------------|----|------------|----|-----------|----|
| 01                | 06            | 00                  | 40 | 06         | 40 | 8A        | 4E |

Slave -> Host Data

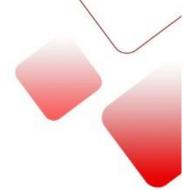
| Device<br>address | Function code | Register<br>address |    | Write data |    | CRC check |    |
|-------------------|---------------|---------------------|----|------------|----|-----------|----|
| 01                | 06            | 00                  | 40 | 06         | 40 | 8A        | 4E |

Write 1600 pulse/s to the lower 16bit of the slave speed (register address 64).

6.4.3 Write multiple registers command 0x10

Host -> Slave Data

| Device<br>address | Function<br>code | The<br>start<br>addre | _  | g Write<br>the<br>number |    | The<br>number<br>of<br>bytes |    | Write<br>content |    | Write<br>content |    | CRC<br>check |  |
|-------------------|------------------|-----------------------|----|--------------------------|----|------------------------------|----|------------------|----|------------------|----|--------------|--|
| 01                | 10               | 00                    | 44 | 00                       | 02 | 04                           | 38 | 80               | 00 | 01               | 3B | 24           |  |


Slave  $\rightarrow$  Host Data

|    | Function<br>code | The starting address |    | Write the<br>number |    | CRC check |    |
|----|------------------|----------------------|----|---------------------|----|-----------|----|
| 01 | 10               | 00                   | 44 | 00                  | 02 | 01        | DD |

Write 14464 to the slave 16bit low (register address 64) and 16bit high (register address) 65) Write 1, that is, the total number of trips is 80000pulse.

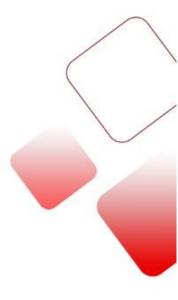
### **6.5 CRC Validation routines**

```
The following routine calculates CRC using the C language.
Uint16 Funct_CRC16(unsigned char * puchMsg, Uint16 DataLen)
{
Uint16 i,j,tmp; Uint16
crcdata=0xFFFF;
for(i=0;i<DataLen;i++)</pre>
{
crcdata=(*puchMsg)^crcdata;
puchMsg++; for(j=0;j<8;j++)</pre>
{
tmp=crcdata&0x0001;
crcdata=crcdata>>1;
if(tmp){
crcdata=crcdata^0xA0
01;
}
} }
returncrcdata;
}
```



## 7 Warranty and after-sales service

Please keep the packing box for transportation, storage or need to return to the company for maintenance. One year warranty period:


From the use of this drive within one year because of the product itself caused by the damage, responsible for the warranty.

Not covered by warranty:

Damage caused by improper wiring, power supply voltage and user peripheral configuration. Without the written authorization of the company, users make changes to the products without authorization. Use beyond electrical and environmental requirements.

The drive serial number has been torn off or is unreadable. The outer shell was visibly damaged.

An irresistible disaster. 6.2 Aftersales Service Before you call, please record the following information: Fault phenomenon Product model and serial number Installation date or production date

