EM-243C DC-MOTOR CONTROLLER 12-48V 50A

(1)

FEATURES (notice Prog. and PCB versions)

- small size
- high current output
- current limit
- zero current limit
- speed setting
- flexible control inputs
- impulse / continuous mode
- rail base mountable
- digital parameter setting
- C ver. card compatible with A version card
- C firmware can be loaded A-ver. card
- C ver. new features
+ freewheel options parameter (param 19)
+2 or 16 kHz pwm freq.select (param. 20)
+ current limit analog input (param 6\&7)
+ speed+dir operating mode (param. 5)
+ Fan and Brake available in board 243C v. 2
+ Extend operating voltage in board 243C v. 2
+ prog. -C v1.5 speed input range adjust
+ prog -C v1.7 bus option / pause input

EM-243C is a full bridge DC-motor starter. It is designed to work with DC-motor in applications where some special functions are needed. Starter has adjustable acceleration and deceleration ramps, which make possible the smooth starts and stops. Adjustable current limit protects motor against overcurrent and it can also be used as an end-stop. This device has also two settable speeds, which are usefull in positioning applications. Control inputs FW and BW start the forward and backward run. STOP is for the motor shut-down but there are also available individual limit inputs for FW and BW directions. SPEED-2 input activates preset speed-2, but it can also be used as input for analog speed control signal 0-5V. FAULT terminal has at the same time input and output function, the pin is normally high, but is pulled down in overheat and conditionally also in current trip situation. If FAULT-line is pulled down externally it will cause a stop and prevent the new start. For example, it is possible to link fault pins of several units together and achieve a syncronous stop.
There are 2 selectable control modes, contionuous and impulse. In continuous mode the motor runs as long as the control is active. In impulse mode a short comand starts the motor, and only a new impulse will change the status. The card has selectable input logics. Inputs are divided in two groups, control and limit -inputs. Groups can be individually set for NPN or PNP logic. The parameters are set with EM-236 interface unit. Operation of the controller and some of its functional values can also be monitored with EM-236 interface unit. In C-version program is possible to select 16 kHz pwm frequency (= silent) but notice that current output capability is lower with 16 kHz .

TECHNICAL DATA

Supply voltage nominal $12-48 \mathrm{~V}$, limits $10-58 \mathrm{~V}$
Start up voltage 9V, shutdown voltage 8 V
Idle current typ 15 mA
Motor current max. with 2 kHz pwm
100% pwm 50A , 20-99pwm\% 35A and peak 100A (5s)
Motor current max. with 16 kHz pwm
100\% pwm 40A , 20-99pwm\% 20A and peak 60A (5s)
Current limit adjustable 1-100A
NOTICE! during start ramp the current limit is 50% boosted Overheat limit $100^{\circ} \mathrm{C}$
Start and stop ramp adjustable 0-5s
PWM frequency 2 kHz or 16 kHz
Speed input range (pin 9) $0-1 \ldots 5$ or $0-2 \ldots 10 \mathrm{~V}=0-100 \%$ pwm
this range can be adjust with parameter 4
I-limit input scale (stop) $0-4 \mathrm{~V}=0-100 \mathrm{~A}$
Input control logic: high $=4-30 \mathrm{~V}$, low $=0-1 \mathrm{~V}$
Control input impedances typ. 10kohm
Control input response time typ 5 ms .
Fault out. NPN open coll. max. 40V / 1A
Fault in actives Uin $<1 \mathrm{~V}$ (NPN)
Fan-output switch on $55^{\circ} \mathrm{C}$, off $50^{\circ} \mathrm{C}$ (only pcb Cv. 2 of later)
Fan-output NPN max. 40V 2A
Break load output Max. 60V 5A
Vout lim output max 25 V 15 mA
Motor and supply connectors 2.5 mm
Control connectors 1 mm
Dimensions $107 \times 73 \times 40 \mathrm{~mm}$
Dimensions in DIN-rail base $110 \times 80 \times 55 \mathrm{~mm}$
CE-tested for industrial environment (EMC)
Operating ambient temp (Ta) $-40 . . .60^{\circ} \mathrm{C}$
Weight 190g

CONNECTIONS

Supply voltage recomendation is $12-48 \mathrm{VDC}$
and ripple should be less than 30% at full load.
Supply voltage limit is 58 Vdc
AUUTION ! Wrong polarity can damage the unit.
CAUTION ! Unit doesn't have an internal fuse, so
an external fuse should be added if fuse required.

MONITORABLE VALUES

1/5 Motor current 0-100A (0-100)
2/5 PWM-level-\% 0-100\% (0-100)
$3 / 5$ hour counter (max.65535h)
$4 / 5$ start counter (max.65535)
$5 / 5$ carry counter for start counter
FAULT-LED signal codes

1. power on one blink
2. current on limit
3. current trip
4. zero-cur trip long blink- short pause..
. overvoltage $4 \times$ blink-pause.
5. overheat
6. timeout
7. fault input

SETTABLE PARAMETERS
prog. 243C v1.7 (defaults in brackets)
1 command mode: (0)
continuous = 0,
impulse = 1 direction change with stop
impulse $2=2$ dir. change without stop
2 start condition combinations: 0-3 (1)
$0=$ start both direction after I-trip and Stop
1 = start only opposite direction after I-trip
2= start only opposite direction after Stop
3= start only opposite direction after I-and Stop
3 input logic combinations 0-7 PNP/NPN (0)
PNP control with positive signal and input has pull down res.
NPN control with negative signal and input has pull up res.
N.C. = input resistor as above, but control signal logic is inverted
$0=$ cont. PNP, limits PNP $4=$ cont. PNP, limits PNP N.C.
$1=$ cont. NPN, limits PNP $5=$ cont. NPN, limits PNP N.C
$2=$ cont. PNP, limits NPN N.C. 6=cont. PNP, limits NPN
$3=$ cont. NPN, limits NPN N.C. 7=cont. NPN, limits NPN
4 running speed $-1: 0-100 \% / 0-100$ (100)
If analog speed input mode is select with parameter 5
then parameter 4 work analog input range adjust
5 control mode / running speed-2 preset $0-100 \% / 0-100$ (50
$0=$ Analog speed mode -1
"speed 2 -input" is used as analog $0-5 \mathrm{~V}$ speed control input.
$1=$ Analog speed mode -2
as above but FW direction is automatically "on" and
FW input works as direction change input.
BW input works as pause input
$2-100=2$-speed mode (two digitally settable speed)
speed- 1 preset with param. 4 and speed-2 with param. 5)
** 6 current limit FW: 1-100A / 1-100 (10)
** 7 current limit REV: 1-100A / 1-100 (10)
NOTICE! If both $6 \& 7$ is set $=0$, then I-limit input is enabled
and works as current limit adjust input.
8 Trip combinations: 0-3 (1)
$0=$ no l-trip, no zero-current-trip
1 = only l-trip
$2=$ only zero-current-trip
$3=$ both I-trip and zero-current-trip
9 I-trip delay: 0-255ms / 0-255 (20)
10 Fault output combinations: 0-3 (1)
$0=1$-trip and zero current won't cause fault output signal
1 = only l-trip causes fault output signal
$2=$ only zero current causes fault output signal
$3=$ both I-trip and zero current causes fault output signal.
4= overcurrent indication = pull down
$5=$ "run" indication = pull down when motor run
11 overvoltage limit: $15-60 \mathrm{~V} / 15-60$ (55)
Overvoltage can be caused when slowing down or
external force rotates motor, then voltage rises result of
regenerating energy. Exceeding the limit will cause first
the brake output activation, then the limit +1 V the power
stage releases to freewheel, and last the limit+ 3 V the
power stage starts dynamic braking.
12 load compensation: 0-255 / 0-255 (0)
Load compensation (RxI) improves low speed and start
torgue, but too high compensation achieve unstable running.
Run motor at low speed (30%) Increace compensation
with small steps until motor start behaviour unstable,
then decrease value about 10%
13 timeout: 0-255s. / 0-255 ($0=$ not in use) (0)
14 reset for start and hour-counter 0/1 (0)
selecting 1 and push save = reset counters
15 start ramp: 0-5s / 0-500 (100)
16 stop ramp: $0-5 \mathrm{~s} / 0-500(100)$
17 start kick 0-200ms / 0-200 (0)
gives short 0-200ms full drive pulse for start
18- I-trip auto reversing $0-5 \mathrm{~s} / 0-500$ (0)
Change automatically run direction when I-trip occurs
the revesing time will select with this parameter
19-Freewheel options 0-5 (0)
$0=$ freewheeling when overvoltage
$1=$ freewheeling when overv. or stopped
$2=$ freewheeling when overv. or during stop ramp
$3=$ freewheeling when overv. or when stopped or during stop ramp
20- Pwm frequency $1=2 \mathrm{kHz} / 2=16 \mathrm{kHz}$ (1)
21- Pin-16 (brake load) options 0-2 (0)
$0=$ regen. braking $=$ switch on when overvoltage exceed
= running indication = switch on pin-16 when motor run
$2=$ as above but also stop input switch on pin-16
22 Serial line configuration, speed, parity, and number of stop bits (1
$1=9600 \mathrm{bps} 8 \mathrm{N1} \quad 5=19200 \mathrm{bps} 8 \mathrm{~N} 1$
$2=9600 \mathrm{bps} 8 \mathrm{~N} 2 \quad 6=19200 \mathrm{bps} 8 \mathrm{~N} 2$
$3=9600$ bps 8E1 $\quad 7=19200$ bps 8 E
$4=9600$ bps $8018=19200$ bps 801
23 Modbus address 1-247 (1)

Optional resistor

1. Speed-2 input 250 ohm resistor if want to use 0-20mA speed set signa
2. Fault output 2.2kohm res for pull up if want to connect for PNP input of PLC
3. Emerg. bias resistor for stop input for stop input line monitoring in safety switch installation (need special software)

The special input functions below will be activate with parameters. In drawing these inputs are in brackets.
*Analog speed mode-1, pin9=speed set.
*Analog speed mode-2 pin9=speed set, 6=direction, 7=pause
**Analog 1 -lim input is activated with set param. 6\&7=0

